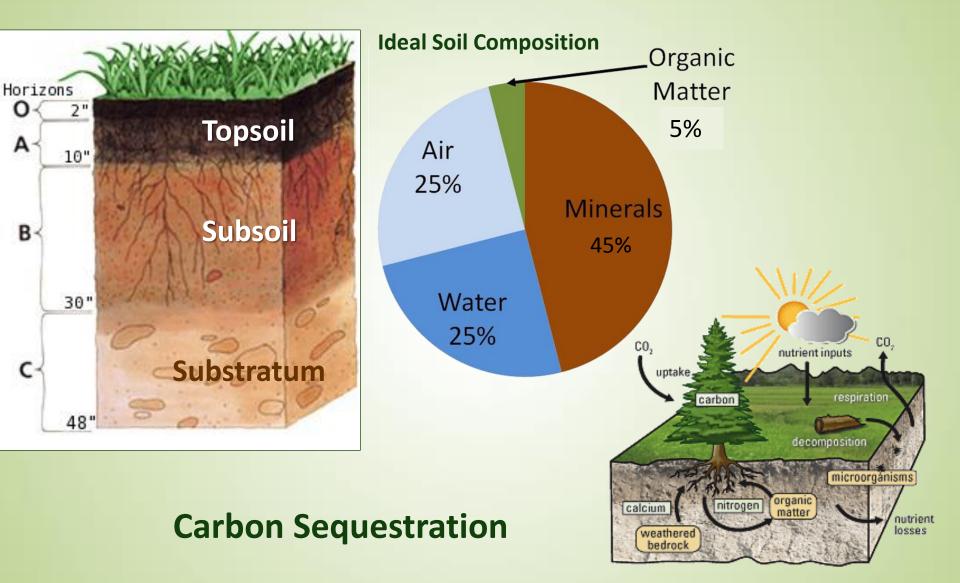
TRIECA 2018 CONFERENCE

Thank you to all of our 2018 gold sponsors:

trieca.com | @TRCA_TRIECA

Biotic Soil Technology for Sustainable Erosion Control and Revegetation


TRIECA Conference March 21, 2018 Brampton, Ontario, Canada

Marc S. Theisen, M.Sc., CPESC, CPSWQ, CESSWI Vice President of Technical Services Profile Products LLC and Matthew M. Welch, CPESC, CESSWI Technical and Business Development Manager Profile Products LLC

Presentation Overview

- The need for topsoil and other agronomic assets to increase soil organic matter
- What is Biotic Soil Technology (BST)?
- What goes into BST materials, how do they work, and when/where to use them?
- Case Studies
- Discussion

Ideal Soil Profile & Nutrient Cycling

"Strive for 5%" Organic Matter

- Improves establishment and survival of vegetation
- Improves soil structure to better accommodate drainage and increases water retention
- Improves resistance to water and wind erosion
 - Creation of pore spaces
 - Enhancement of soil aggregation (through microbial activity)
- Reduces need for chemical based inputs
 - Fertilizers, pesticides, herbicides and more
- Improves rain/stormwater absorption and infiltration
- For every 1% increase in organic matter, water-holding capacity increases by 150,000 to 250,000 L/Ha – depending on soil type (USDA NRCS 2013)

How Do I Increase Organic Matter Content in My Soil?

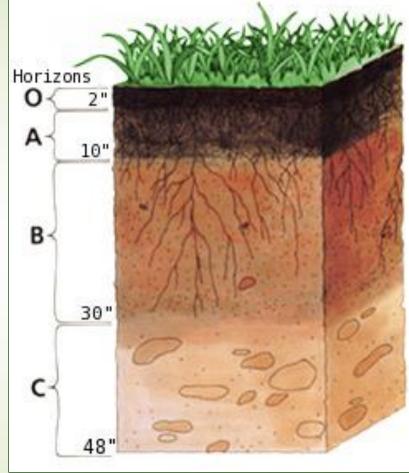
- Topsoil
- Compost
- Peat Moss
- Wood chips, sawdust, straw, manure, biosolids, etc.
- How about Biotic Soil Technology?

Biotic Soil Technology (BST)

- Generic term to describe manufactured growth media or "engineered soils" containing recycled biodegradable fibers, biostimulants, biological inoculants and other amendments
- Designed to promote regeneration of denuded soils and accelerate sustainable vegetative establishment
- Why import "topsoil" when you can build a soil in place?

Biotic Soil Technology (BST)

Descriptors or **Categories** include:


- Biotic Soil Amendment (BSA)
- Biotic Soil Media (BSM)
- Engineered Soil Media (ESM)
- Hydraulic Growth Medium (HGM)
- Hydraulic Biotic Soil Amendment (HBSA)
- Organic Fiber Matrix (OFM)

Some Common BST Components

- Bark and Wood, Straw, Flax, Fibers phyto-sanitized to provide organic matter, erosion resistance and high moisture retention without weed seeds and pathogens
- Soil Building Components:
 - Porous Ceramics and Biochar stable, porous particles that demonstrate a high CEC, ability to hold water/nutrients & act as habitat ("coral reef") for beneficial bacteria and fungi
 - Beneficial Bacteria colonize "fresh" substrates and essential for soil processes, Nitrogen fixation, aggregation of soil particles, and maintenance of soil nutrients
 - Endomycorrhizae symbiotic association of a fungus and plant roots to facilitate nutrient and water uptake that improves drought, disease and salinity resistance
 - Humic Acid principal component of humic substances, which are the major organic constituents of soil (humus), peat and coal produced by biodegradation of dead organic matter
 - Seaweed Extract (cytokinins) plant growth substances (phyto-hormones) that promote cell division or cytokinesis in plant roots and shoots
- Cross-linked Polysaccharide Biopolymers/Flocculants increase water-holding capacity, viscosity, bond strength, and "shoot-ability" of the media matrix

How Do BST Work to Build Soils?

- BST improves soil chemistry which later improves soil structure/texture with increased organic matter and biological activity combined with plant establishment and subsequent nutrient cycling.
- Helps O & A horizons to regenerate faster by creating a "revegetation platform".
- While the soil chemistry is improving, the media provides a more ideal growing environment.
- Provides rapid growth establishment and sustains long-term vegetation.

"SOIL PROFILE" by Hridith Sudev Nambiar - derived work from File:Soil profile.jpg by US Department of Agriculture. Licensed under CC BY-SA 3.0 via Wikipedia - http://en.wikipedia.org/wiki/File:SOIL_PROFILE.png#mediaviewer/File:SOIL_PROFILE.png Five Weeks After BST Installation Developing an "Engineered O Horizon"

05.07.2015 22:16

BST Soil Development

Full Development of O and A Horizons

Typical BST Application Rates

% Organic Matter	lb/ac	kg/ha
< 0.75	5,000	5,600
<u>></u> 0.75 to <1.5	4,500	5,040
≥1.5 to <2.0	4,000	4,480
≥2.0 to <5.0	3,500	3,920

- Always conduct a soil test to determine agronomic needs.
- Soils with organic matter >5% typically do not require BST.
- Depending on the test results, it is typically advisable to apply fertilizer, pH neutralizers and/or additional biostimulants with BST.

BST Advantages

- Engineered and manufactured under highly controlled conditions to ensure consistency in each and every bale of material provided.
- The material can be placed faster and more uniformly through standard hydraulic seeding/mulching equipment with no dust or potential for wind erosion.
- Seed, fertilizer and other soil amendments may be applied in the same hydraulic slurry saving time and improving worker safety due to less exposure to jobsite hazards or traffic.
- May be applied in wet or freezing temperatures and require minimal soil preparation.
- Designed to complement and bond with hydraulically-applied erosion control products.

Mixing and Application

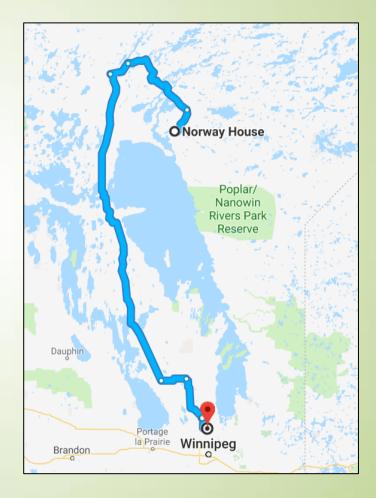
- Pre-packaged bales mixed with water, seed, fertilizer, amendments and other components
- Applied below hydraulically-applied or rolled erosion control products, blown straw or even sod
- Complements performance of hydraulically-applied erosion control products such as Flexible Growth Medium

Canoe Journeys Nisqually Tribe Olympia, WA

> Country Green Hydroseeding 1-800-300-1763

> > Convenient application of Biotic Soil Media, biostimulant, seed, and fertilizer in one pass < 4 tank loads/ha with 3,000 gallon machine

Norway House Baseball Diamond Project Norway House, Manitoba 53.9821° N, 97.8329° W


Baseball Diamond Renovation Norway House, Manitoba

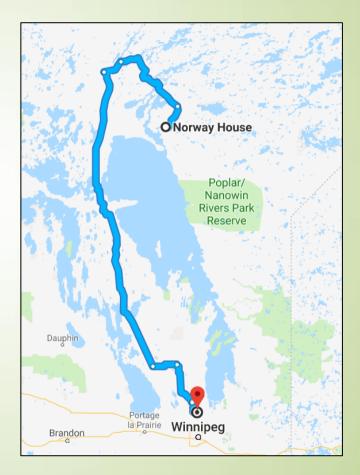
- Specifications called for:
 - Kentucky Bluegrass/Fescue blended sod
 - 10 cm of topsoil below sod over existing substrate
- Very short growing season with full establishment required for following season

Baseball Diamond Renovation Norway House, Manitoba

- Nearest Topsoil and Sod Source – Winnipeg 796 km
- Hauling costs for both materials were extreme
 - Blended "Topsoil" near site was being considered
- BST was proposed as an alternative to "Topsoil"
 - Soil Sampling/Testing
 Initiated

Blended "Soil" Option

Blend "Soils" and/or Compost to Create...



"Manufactured" Soils

Baseball Diamond Renovation Norway House, Manitoba

- Other Potential Costs:
 - Removal of existing substrate before topsoil application to reach final grade
 - Labor costs
 - Speed of Installation
 - Maintenance

Soil Test – June 6, 2016

Sample (#)	Aqua-pHix™ (gal/acre)	NeutraLime™ ³ (lb/acre)	JumpStart™ (gal/acre)	BioPrime™ (lb/acre)	Soluble Gypsum (lb/acre)	ProGanics™ BSM (lb/acre)
1	10	0	3.75	120		4500
2	10	0	5	160		5000

SOIL ANALYSIS RESULTS

Sample (#)	Texture (USDA)	Sand (%)	Silt (%)	Clay (%)	Soil pH (6.3 - 7.3)	TDS ¹ (ppm) (< 256)	SAR ² (< 2)	Organic Matter (%) (3 - 5%)	CEC % Sodium ⁴ (%) (< 2%)
1	Clay	29.2	20	50.8	8.1	371.2	0.63	1.3	0.6
2	Sand	95.2	0.01	4.8	8.5	134.4	0.4	0.3	0.3

Typical BST Application Rates

% Organic Matter	lb/ac	kg/ha
< 0.75	5,000	5,600
≥0.75 to <1.5	4,500	5,040
≥1.5 to <2.0	4,000	4,480
≥2.0 to <5.0	3,500	3,920

- Always conduct a soil test to determine agronomic needs.
- Soils with organic matter >5% typically do not require BST.
- Depending on the test results, it is typically advisable to apply fertilizer, pH neutralizers and/or additional biostimulants with BST.

Installation Completed July 1, 2016

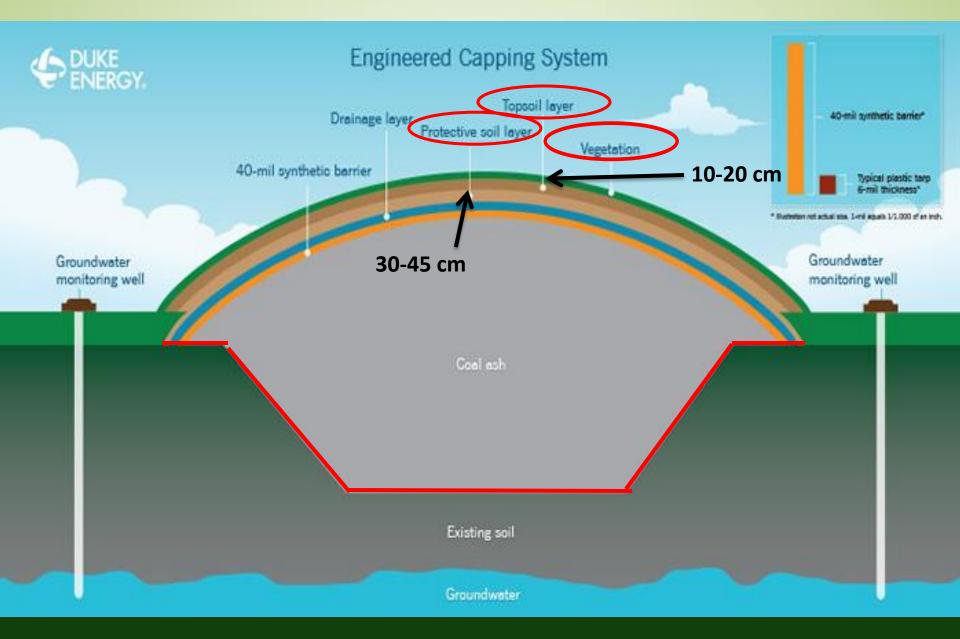
BST – 5,600 kg/ha

• 18-24-12 Fertilizer

Gypsum Supplement

Sod – Kentucky Bluegrass/ Fescue Blend

Placement of Sod over BST



Outstanding Results

- Field received heavy use starting in April 2017, performing well and thriving after 12 months
- Great root development into native soil layers

Coal Ash Closure Capping System

Cover System Comparison (10 hectares)

- Topsoil costs at 150 mm specified depth:
 - \$13.00 m³ delivered for 1,500 m³/ha
 - \$10.00 m³ to spread 100 truckloads of soil/ha
 - ~ \$35,300/ha

BST costs:

~ \$19,000/ha applied w/ seed/fertilizer/amendments

Total Cost savings ~ \$160,300 = 54%
 And a Dramatic decrease in installation time!

BST Application on Cover System

Flexible Growth Medium "Cap"

Three Weeks Later!

BST Provides Solution at "Lunar" Quebec site

Thetford Mines, Quebec

August 2016

Rebuilding a deficient substrate

September 2016

Fall 2017

Central America Copper Mine

Site Conditions:

- Tropical with rolling terrain
- Precipitation typically abundant and very heavy rainfall can occur during wet season
 - 2014 ~ 6 m (236 in)
 - 2015 ~ 4.35 m (170 in)
 - 2016 (through August) ~ 3.5 m (138 in)
- Erosion potential very high
- Wet season typically 8 months May through December
- "Dry" season January through April, but rain can occur at any time

Rock Debris Slope September 16, 2015

BST Application September 16, 2015

FGM Application September 16, 2015

Two Months Later November 18, 2015

March 2016 – Degraded Mine Site Southeastern US

Erosion over 10 year period

3 failed reclamation attempts

April 25, 2016

Per soil test recommendations installed:

- 5,600 kg/ha of BST
- 3,920 kg/ha of HP-FGM
- Fast-Acting Lime
- Slow-Release and Fast-Acting Biostimulant additives

Slopes were cat tracked to:

- Increase soil roughness
- Reduce erosion potential
- Create pockets for germination

April 25, 2016

Installation of Flexible Growth Medium over brown BST

April 25, 2016

Drone shot of applications over 2 hectare site

- Adjacent photo show site after Tropical Storm Colin dumped 150 mm of rain on June 5-6
- Site showed no soil loss into lake
- Engineer/Owner pleased with results

June 2016

- Very rapid grow in after Tropical Storm Colin
- Cover crop gave way to permanent seed mix

Mine Reclamation Complete

October 2016

Project Summary

- Initiated/completed final design Jan/Feb 2016
- Completed grading & recontouring and application by end of April 2016
- Site inspection mid-August 2016 by regulatory agency
- Completed reclamation release on September 1, 2016
 - < 6 months from time of construction until release

Follow Up – September 2017

Climax Community

Sustainable Vegetation

Mine Site Soil Test Results

December, 2015

Sandy Clay Loam

- Organic Matter 0.4%
- pH 5.0

December, 2017

Sandy Clay Loam

- Organic Matter 2.0%
- pH 5.3

Soil Respiration

Condition	Average C-CO ₂ (ppm)/100g/day	% Increase in Soil Respiration	
Untreated Soil	17.4	n/a	
BST Treated Soil	47.1	271%	

- Significant increase in soil respiration with BST treated soil compared to untreated area after 18 months
- Indicator BST treated soil is improving soil health

Bacteria/Fungal Counts

Condition	Bacteria (cells/g soil)	% Increase in Bacteria	Fungal (cells/g soil)	% Increase in Fungi
Untreated Soil	6.7E+09		1.1E+07	
BST Treated Soil	2.3E+10	345%	1.6E+07	142%

- Significant increase in both bacteria and fungal counts in BST treated soil compared to untreated area after 18 months
- Indicator BST treated soil is improving soil health

"The Five Fundamentals"

Create Optimal Soil Conditions

Pick the Right Plant Species

Select the Correct Erosion Control Materials

Ensure Proper Installation

Inspection and Maintenance

Biotic Soil Technology for Sustainable Erosion Control and Revegetation

TRIECA Conference March 21, 2018 Brampton, Ontario, Canada

Marc S. Theisen, M.Sc., CPESC, CPSWQ, CESSWI Vice President of Technical Services Profile Products LLC and Matthew M. Welch, CPESC, CESSWI Technical and Business Development Manager Profile Products LLC

TRIECA 2018 CONFERENCE

Thank you to all of our 2018 gold sponsors:

trieca.com | @TRCA_TRIECA