# TRIECA CONFERENCE

## Thank you to all of our 2017 sponsors:





























**Media Partners** 



Hosts





# Implementation of New Technologies, Concepts, and Approaches to Monitoring and Managing Construction Sites









Paul Villard Ph.D., P.Geo., CISEC-CAN March 22-23, 2017



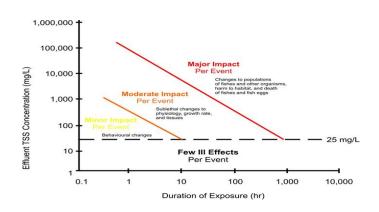
## **Spoilers**

- Focus on communication, education, and risk management
- New potential technologies:
  - Telemetry-based turbidity monitoring and alarm systems
  - Drones for site surveys
  - Cellular and GPS enabled tablets for documenting site conditions
- Staff allocation, response time, impact mitigation, appropriateness, and level of risk
- One solution does not fill all part of a larger toolbox
- Many of these methods are in their infancy
- New tools (toys) do not replace good communication and 'boots on the ground'










## Risk assessment

Create awareness of hazards and risk – COMMUNICATION TOOL

- What can happen and under what circumstances?
- What are the possible consequences (level of impact)?
- How likely are the possible consequences to occur?
- Is the risk controlled effectively, or is further action required?

Modified from Canadian Centre for Occupational Health and Safety





# Potential effects of turbidity and suspended sediment on aquatic life

Impacts are dependent on *concentration* and *duration* 

Excessive suspended sediment can result in:

- Clogging or abrasion of gills of aquatic organisms
- Increase susceptibility to disease parasites
- Limitations to visibility and movement
  - Interference with movement
  - Disruption of social behaviours, foraging, and predator avoidance
- Reduced quality of fish habitat: \*
  - lack of plant growth
  - lack of suitable substrata for laying eggs
- Destruction of benthic organisms \*

## What are methods of hazard control?

- Elimination (including substitution) Project planning and phasing
- Engineering Controls ESC plans and physical measures
- Administrative Controls / Site Management
  - Emergency response
  - Communication plans
  - Site meetings
  - Reporting
  - Education

Telemetry-based

turbidity monitoring,

drones for site surveys,

and GPS and cellular

enabled tablets

# Telemetry-based turbidity monitoring

- Measuring turbidity turbidity is quantified using a nephelometer, which
  measures the amount of light that is scattered from a light source by suspended
  particles in the water
- Unlike TSS, which is described as a concentration, turbidity is described using NTU values
- Compare upstream conditions to downstream conditions







# Telemetry-based turbidity monitoring

- Example Silt Smart (MNRF, DFO & CVC document)
- Designed to provide continuous monitoring of site conditions through the use of turbidity sensors
- Reactive
- Monitoring through telemetry-based instruments
- Usually includes response to issues documented
- Quantification of events magnitude and duration
- Used to improve response and communication



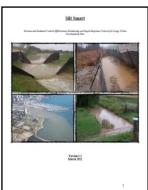


# Telemetry-based turbidity monitoring

#### Advantages:

- Outcome-oriented
- Identifies issues immediately reducing durations
- Accounts for natural inputs
- Monitors during high risk periods –
   bad weather
- Educational and communication tool




#### **Disadvantages:**

- Requires regular maintenance
- Relies on cellular network, servers and other electronics
- Expensive
- Does not replace regular review of ESC measures
- Only appropriate for large complicated projects with high value/sensitive watercourses

## **Overall**

- Technology is expensive scale of project needs to be considered
- These are not off the shelf units they require onsite testing and programming for communication and alarms
- Needs calibration/verification of targets on a site-by-site basis
- Need to be aware of natural sources of sediment channels do erode and transport sediment
- Need to be aware of the limitations of the technology and provide proponent time to identify issues and react
- Likely only appropriate on large projects with high risk activities and high value aquatic habitat







#### **Drones**

#### Advantages:

- Can rapidly review sites
- Observation of overall drainage patterns
- Appropriate for channel working and linear infrastructure projects
- Proactive approach
- Potential for quantification of volumes of materials, such as fill piles
- Good communication tool

#### **Disadvantages:**

- Need permits and regulations are still evolving
- Flights are weather dependent
- Should be completed away from vehicles and people
- Many areas in GTA are within flight zones
- Potential legal issues with images collected







## **Overall**

- Potential for linear infrastructure
- Potential for monitoring large scale restoration or channel realignments
- Evolving landscape with regards to permitting for their use
- Requires dedicated and trained staff for operation
- Get overview of site 'warts and all'
- Agreements between stakeholders on how the information is to be used should be put in place before use
- Need to remember it is a fair weather tool
- Added liability with operation





## Web-based submission forms

- Simple to complex cell phone with GPS and camera all the way to readymade apps or forms for tablets that can be distributed to stakeholders
- Generally two types: regulatory/compliance and working communication tool
- Not a monitoring method itself supplements monitoring activities
- It allows for georeferenced observations







## Web-based submission forms

#### **Advantages:**

- Speeds up potential response time
- Reduces potential confusion with regards to location of issue
- Good for record keeping
- Locational information tied to observations
- Good communication tool

#### **Disadvantages:**

- Added expense of equipment, programming, and software agreements
- Information overload
- Reliance on email when issues require immediate attention
- Does not replace site meetings and more direct communication



## **Overall**

- Potential to improve response time by rapidly and accurately relaying information regarding to site conditions to multiple parties
- Reliance on apps or web-based software
- Can create information overload
- A lot of potential but in it's infancy
- Does not replace site meetings and more direct communication





#### **Communication and Measures of Success**

- Need to improve and diversify our communication tools and measures of success
- How many days without an event
- How quickly were issues addressed
- How often did we communicate site conditions and environmental risks
- Documenting and communicating causes, impacts and mitigation of events – learning from experience

