TRIECA 2018 CONFERENCE

Thank you to all of our 2018 gold sponsors:

trieca.com | @TRCA_TRIECA

Pond #53 Sediment Removal & Retrofit Project

TRIECA Conference March 22, 2018

Agenda

- 1. Introduction / Overview
- 2. Existing Conditions
- 3. Watershed WQ Assessment
- 4. Erosion, Sediment Control and Removal Plan
- 5. Soil Reuse Opportunity
- 6. Pond Retrofit and Design Features
- 7. Monitoring and Mitigation

#1: Introduction

Primary Objective:

 Solution to address water quality / quantity control issues for current operation

Secondary objectives:

- Improve efficiencies in SWMF sediment "clean outs" and sediment disposal
- Retrofit designs to improve downstream water quality
- Alternative and/or less expensive sediment disposal options

FCM Green Municipal Fund

Total Grant Amount: \$350,000

Notable Project Award Factors:

- Reuse of sediment for application in a City ROW
- Increased landfill capacity
- Implementation of innovative technology to improve facility function and WQ

Class EA Process (Schedule A+)

GREENLAND

Required Approvals

7

I. Environmental
 Compliance Approval
 (ECA) Application:

Amendment

- 2. Permit to Take Water
 - Conservation Authority Approvals (GRCA)

4. ECA for Approval of a Waste Disposal Site

#2: Existing Conditions

- Permanent pool design storage = 1,000 m³
 80% (approx.) filled with sediment
- Water quality extended detention storage = 990 m³

#3: Watershed Assessment Nutrient and Sediment Load Analysis

Approach:

- Simulated land use based and routing processes (un-calibrated CANWET simulation)
- 2. Conservative load reductions for similar SWMF retrofits applied in Catchment 11
- Regression analysis applied to estimate loads (monitoring data available)
- Simulated results compared against measured flows / concentrations / loads
- 5. Simulation scaled to estimate loads entering reservoir

#3: Watershed Water Quality Assessment Nutrient and Sediment Load Analysis cont...

Proposed high efficiency sediment removal systems (est. 90% efficiency) could reduce on average 23% of total sediment load to reservoir. Proposed high efficiency phosphorus removal systems (est. **70% efficiency**) could reduce on average **6%** of total phosphorus load to the reservoir.

#4: Erosion, Sediment Control and Removal Plan

Plans required for Project Implementation

- Dewatering
- Construction access
- Flow diversion
- **Erosion and Sediment Control**
- Construction traffic management
- Sediment removal
- **Disposal and Reuse**
- Restoration plan

#5: Sediment Beneficial Reuse Opportunity

- Sediment Volume: 360m³
- Methodology: Prepared by 3rd party
- **Receiving Site:** Vegetated Medians on Columbia Street, Waterloo ON

#5: Soil Reuse Opportunity cont...

Identified Benefits:

- Cost Savings compared to traditional disposal (reinvestment in upstream solutions)
- Increased landfill capacities throughout Ontario
- Reduced wear on roadways & related transportation infrastructure
- Decreased traffic congestion
- Solution to a major problem faced by all Canadian municipalities

Excess Soil Management:

- Larger sediment forebay isolated from the main pool
- Energy dissipating flow paths from the three
 (3) inlets to new sediment forebay
- Enhanced contact points for the Water Lynx product to increase sedimentation efficiencies
- Construction mitigation and restoration features

Water Lynx Blocks Strung in Series

cont...

cont...

Inlet Redesign Criteria:

- Replace individual sediment forebays with energy dissipation structures redirecting flow to the new sediment forebay
- 2. Addition of Clearflow Water Lynx blocks

Storm Inlet	South Area 221	North Area 225	East Area 224
Drainage Area (ha)	12.0	1.3	1.7
Location	# of		Saw -
North Inlet:	7	AUTO	
East inlet:	10	Latter	
South inlet:	45	18 De	
		and the second	

cont...

Improved flow path from East Inlet to retrofitted Sediment Forebay

North Channel:

- Slope: 0.2%

- Width: 0.5m

South Channel:

- Slope: 5%

- Width: 3.5m

cont...

Pond #53 - Key Retrofit Design

Goals:

- 1. Maximize potential to meet the Enhanced Protection objectives outlined in the MOECC SWM Manual (2003)
- 2. Introduce a more effective treatment to further reduce TSS normally removed by prolonged detention (>100 hours)

- 3. Reduce phosphorus loading from 0.11 mg/L to 0.05 mg/L * (MOECC 0.1 mg/L)
- 4. Introduce improved access to areas that will require either monitoring or more frequent maintenance

<u>#6: Pond Retrofit – Design Features</u> Opportunities for Cost Savings (\$)

Soil Removal:

 Utilizing Soil Lynx will allow for potential cost savings of up to 28%* (compared to traditional removal methods)

Soil Reuse:

\$72,000

- Soil Reuse Volume = 360 m^{3**}
- Traditional Disposal = \$160 \$200 / m³
- Potential Savings= \$57,600 -

Maintenance:

- Reduction of influent sediments to permanent pool
- Cleanout area isolated to sediment forebay
- Permanent access roads for maintenance equipment
 - * Case Study: Demucking of Salt Brine Pond in Fort Saskatchewan
 - ** Reduced volume for proof of concept, future projects will have larger volumes

#6: Monitoring and Mitigation

- Flow
- Water Quality (COD, Na, Al, S / Sulfate)
- Inspection
- Annual Maintenance Checklist

TRIECA 2018 CONFERENCE

Thank you to all of our 2018 gold sponsors:

trieca.com | @TRCA_TRIECA