TRIECA 2018 CONFERENCE

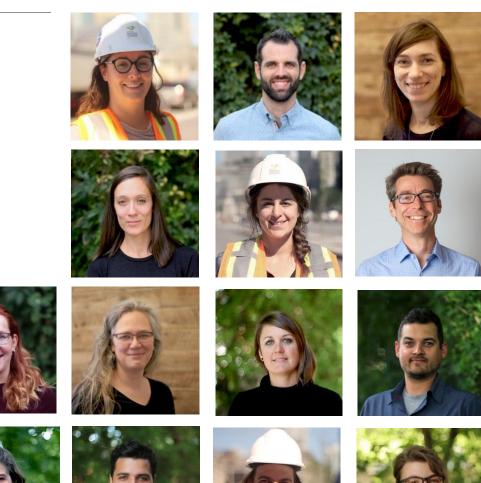
Thank you to all of our 2018 gold sponsors:

trieca.com | @TRCA_TRIECA

Groupe ROUSSEAU LEFEBVRE

design + environment

SOIL WATER CONTENT AND PLANT SURVIVABILITY IN BIORETENTION CELLS


Mélanie Glorieux, Landscape Architect, M. Ing., SITES AP Partner

www.rousseau-lefebvre.com

Who we are

Multidisciplinary team for applied sustainable development

R&D Mission

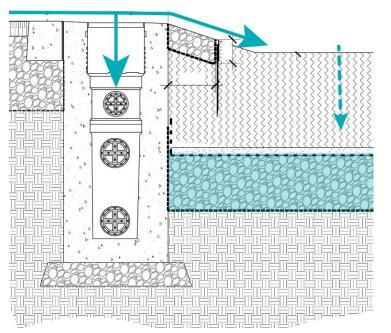
Performance evaluation of landscape projects

Understand behavior in the short and long term, and at all stages

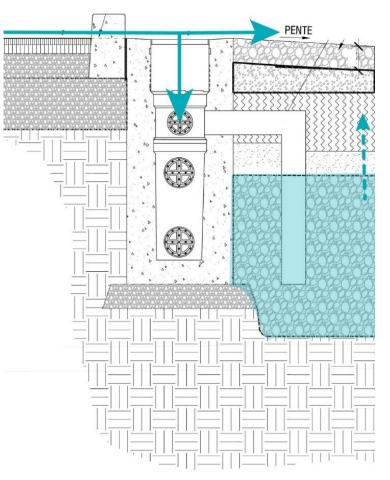
- > Design
- > Construction
- > Maintenance

Bioretention – thrive not survive

- > Centropolis Phase1 (Laval)
- > Centropolis Phase2 (Laval)
- \checkmark > Saint-Martin Blvd (Laval)
- ∇ > GRL office (Laval)


- > City Hall Parking (Mont-Saint-Hilaire)
- > Blain Street (Mont-Saint-Hilaire)

Design options

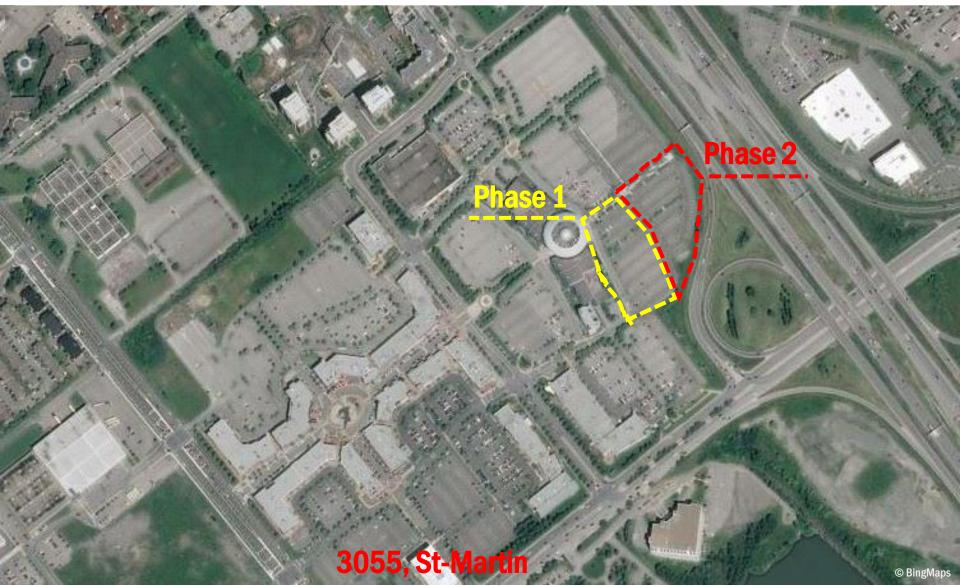

Infiltration

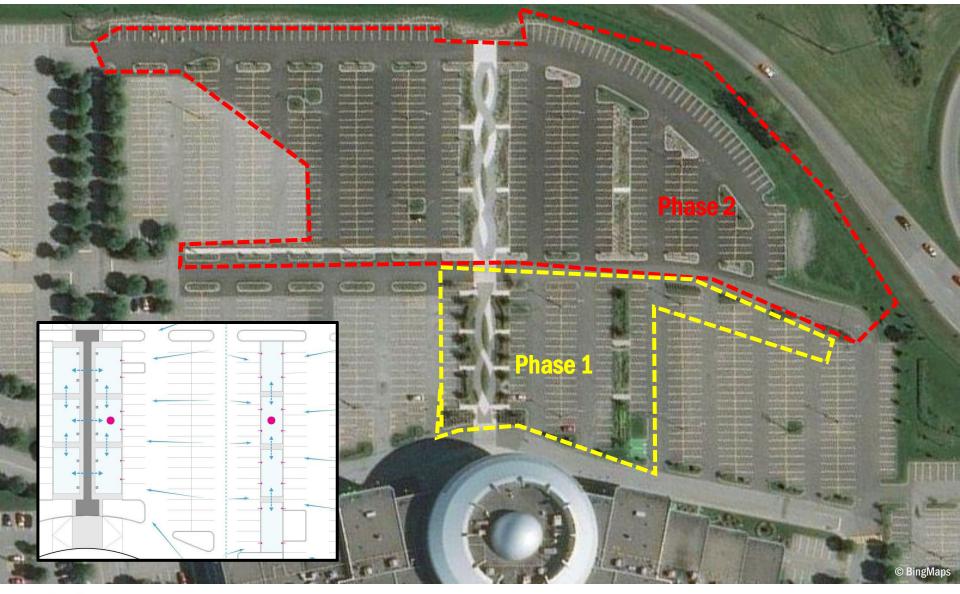
- > Media
- > Seperation layer
- > Reservoir layer
- > Vegetation

Exfiltration

Media options

- > Organic matter
- > Wilting point
- > Field capacity


Growing Media	Permanent wilting point (theoretical) PWP	Field capacity (theoretical) FC
House mix A	12%	25-34%
House mix B	12%	25-34%
no 2 Savaria	12%	24%
Écovert/Natureausol Savaria	10%	21.5%



Centropolis

Centropolis

Centropolis (phase 1)

- > <u>Year of Construction</u>: 2012
- > <u>Vegetation type</u>: Trees, shrubs and forbs
- > 2 of the 9 bioretention cells were followed

Inlet type	Exfiltration
Media	No 2 Savaria
Number of PWP events	8
Number of FC events	1
Plant health	80% -90%

Centropolis (phase 2)

- > Year of Construction : 2014/2015
- > <u>Vegetation type</u>: Trees, shrubs and forbs
- > 5 of the 8 bioretention cells were followed

Inlet type	Infiltration
Media	Ecovert/Natureausol
Number of PWP events	1
Number of FC events	2
Plant health	85%-90%



3055 boulevard St-Martin

- > Year of Construction : 2014/2015
- > <u>Vegetation type</u> : Shrubs and forbs
- > 3 of the 3 bioretention cells were followed

EAUX DU TOIT EAUX PROJETÉES SUR LES FAÇADES

© GROUPE ROUSSEAU LEFEBVRE

3055 boulevard St-Martin

- > Year of Construction : 2014/2015
- > <u>Vegetation type</u>: Shrubs and forbs
- > 3 of the 3 bioretention cells were followed

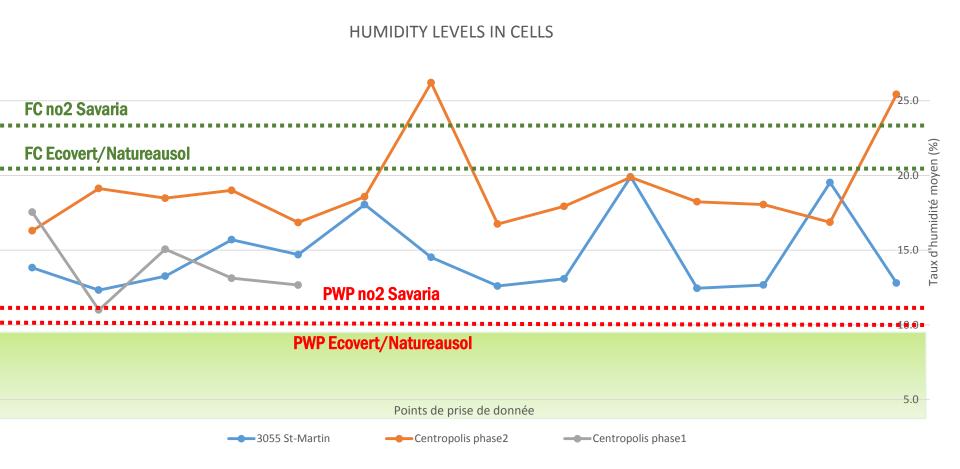
Inlet type	Infiltration and	
	exfiltration	
Media	Ecovert/Natureausol	
Number of PWP events	2/1	
Number of FC events	1/1	
Plant health	90%	

GRL Office

- > <u>Year of Construction</u>: 2009
- > <u>Vegetation type</u> : Forbs
- > 2 of the 2 bioretention cells were followed

GRL Office

- > <u>Year of Construction</u>: 2009
- > <u>Vegetation type</u> : Forbs
- > 2 of the 2 bioretention cells were followed

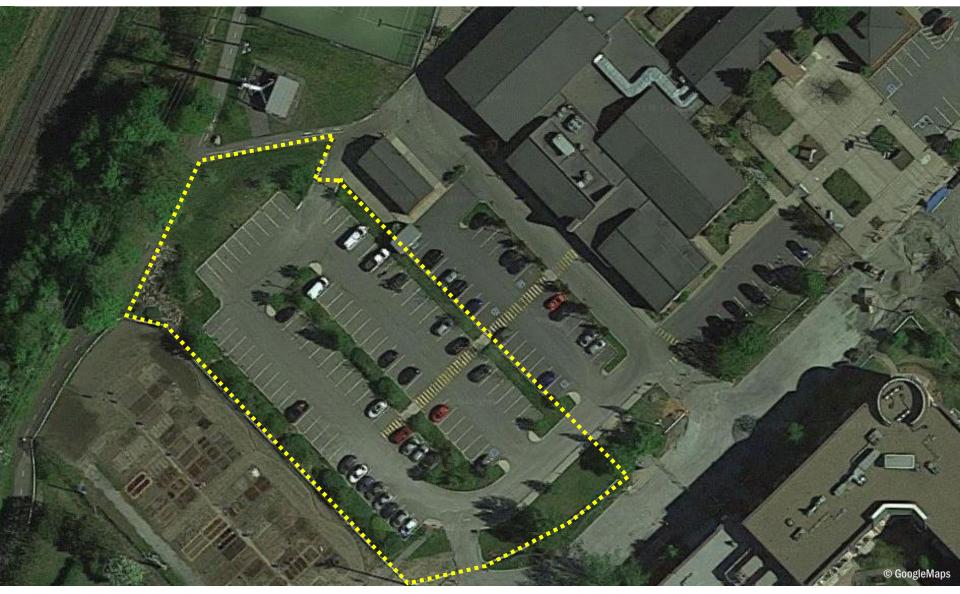

Inlet type	Infiltration
Media	House mix A and B
Number of PWP events	A: 7
	B: 14
Number of FC events	A: 2
	B: 2
Plant health	90%

Centropolis Comparative Results

Blain Street

Blain Street

Blain Street

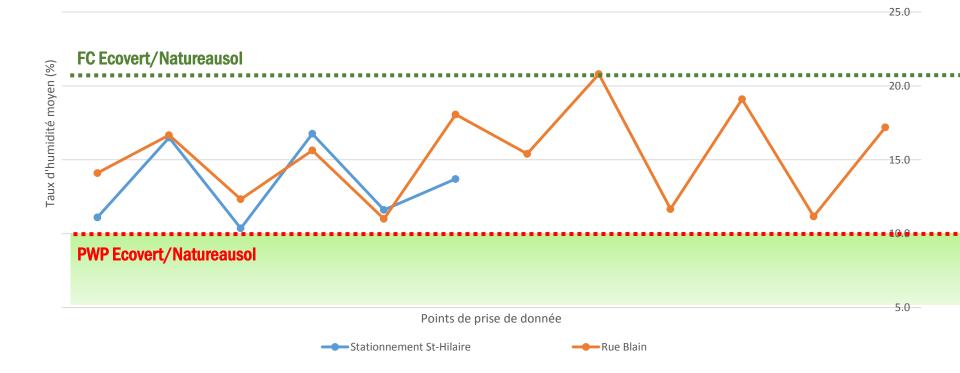

- > <u>Year of Construction</u>: 2015
- > <u>Vegetation type</u>: Trees, shrubs and forbs
- > <u>5 out of 15 cells followed</u>

Inlet type	Infiltration
Media	Ecovert/Natureausol
Number of PWP events	2
Number of FC events	2
Plant health	90%

Civic Centre Mont-Saint-Hilaire

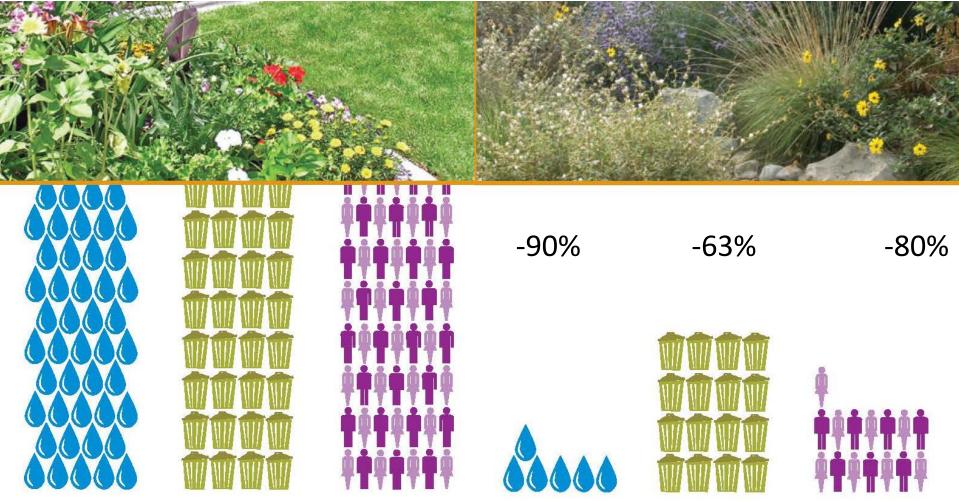
Civic Centre

- > <u>Year of Construction</u>: 2009
- > <u>Vegetation type</u>: Trees, shrubs and forbs
- > <u>3 of the 4 cells followed</u>


Inlet type	Infiltration
Media	Écovert/Natureausol
Number of PWP events	6
Number of FC events	1
Plant health	100%

HUMIDITY LEVELS IN CELLS

Plant maintenance



Plant maintenance

Traditional

Sustainable

Source: City of Santa Monica:

Sediment control/pretreatment

What we learned

- > Infiltration systems distribute water more evenly over time
- > Inlet design is key
- > Lowest wilting point (PWP) seem to lead to greater performance of vegetation
- > Sediment loads/maintenance have to be monitered to increase performance

A reminder

> Media choice is one of the many parameters... it is a system!

SITES AP

Mélanie Glorieux, architecte paysagiste, M. Ing., SITES AP Directrice de projets e: <u>m.glorieux@rousseau-lefebvre.com</u> t: 450.663.2145, p.229 f: 450.663.2146

design +

216, boul. Lévesque Est, Laval, QC H7G 1C6 LAVAL MONTRÉAL 2030, boul. Pie-IX, bur. 403, Montréal, QC H1W 2C8 environnement 1.866.311.8281 | www.rousseau-lefebvre.com

TRIECA CONFERENCE

www.rousseau-lefebvre.com

TRIECA 2018 CONFERENCE

Thank you to all of our 2018 gold sponsors:

trieca.com | @TRCA_TRIECA

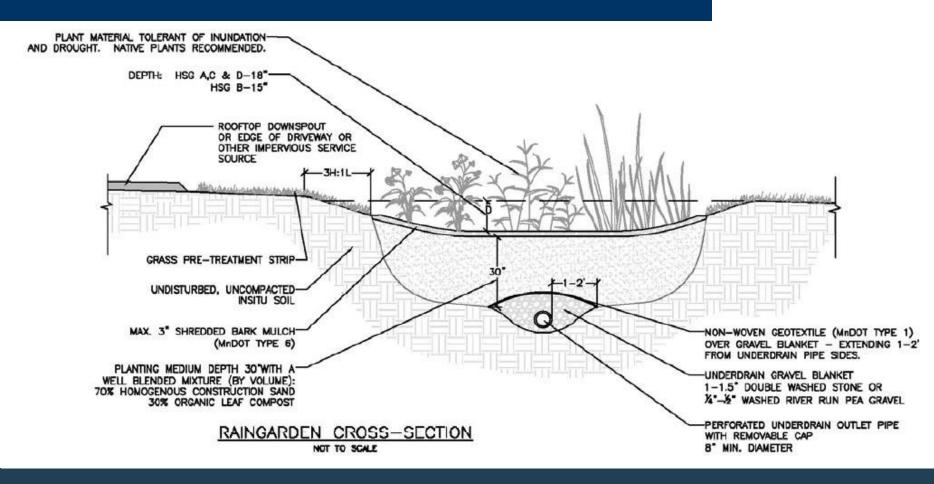
Bioretention Soil Media: A Phosphorus Source or Sink?

TRIECA Conference Brett H. Emmons, CEO bemmons@eorinc.com March 21st, 2018 Principal & Founder, EOR www.eorinc.com

Introductions

A collaborative group of environmental and design professionals passionate about protecting our waters, restoring healthy ecosystems, and enhancing our community's unique sense of place.

www.eoring



watersheds & water resources

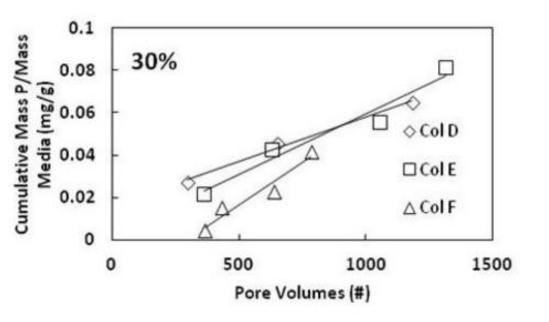
ecosystem restoration

civil engineering & landscape arch.

Bioretention Media Composition

MN Mix A: Water Quality Blend

A well blended, homogenous mixture of:


- 60 to 70 percent construction sand;
- 15 to 25 percent top soil; and
- 15 to 25 percent organic matter

MN Mix B: Enhanced Filtration Blend

A well-blended, homogenous mixture of:

- 70 to 85 percent construction sand; and
- 15 to 30 percent organic matter

UMN Research: P-leaching

UMN Stormwater Research Updates Capture and Release of Pollutants by Rain Gardens November 2011 (volume 6 - issue 10) *Contributed by Joel G. Morgan, John S. Gulliver, and Raymond M. Hozalski* (Department of Civil Engineering, Univ. of MN) The column studies indicate that phosphorus leaches off the compost and leaves the system.

 Phosphorus leaching rate of 0.29 mg/L from 30% compost columns likely to remain constant

over time because compost will continually decompose.

- Plants uptake phosphorus while alive; however, upon death, release it back into the soil media.
- Annual refreshing of the top layer of mulch continues to add a phosphorus source.

Phosphorus-Index

Page 1 of 1 Report Number: 17-138-0533 Account Number: 40751					۷	Vay	p	sir	nt	W											ntent	
	Turf & Soil Di 35 King Stree Trumansburg	et					ANA	ALYTI		very ac	omo 6								mix phor		om) it is	S
									NALY				Ал	alytical	Method(s	s): N	Mehlich 3	3 SMF	1P Buffer pl	H Los	is On Ignition W	Water pH
Date Received:	05/18/2017	OM	Date Of W/V	f Analysi		5/19/2017 P	E Phoseta	/	Report	: 05/2		7 otassium	Mag	nesium	Cal	lcium	Sc	odium	r	оH	Acidity	C.E.C
Sample ID Field ID	Lab Number	% Rate	Soil Class	lbe//		M3	ppm	Rate	ppm	n Rate		K pm Rate	1	Mg m Rate	C	Ca n Rate	N	Na Rate	Soil	Buffer Index	r H	meq/100g
70/30 Rain w/ Compost	25875	1.0 L		43	C	70 H					3	310 VH	177	7 M	1775	5 H	46	; VL				11.3
80/20 Rain w/ Compost	25876	0.8 VL		42		44 M					1	170 VH	155	5 M	1405	5 H	43	I L				8.9
70/30 Rain w/ 1inch Peat	25877	2.2 L		65	10.00	2 VL						28 VL	158	68 M	1321	1 H	36	i VL				8.9
80/20 Rain w/ 1inch Peat	25878	1.3 L		54		2 VL						52 VL	121	:1 H	987	7 H	30) L				6.2
Sample ID	P	Percent Base Saturation				Nitrate Sulfur				-	ganese				Copper Boron			Soluble Salts		Total Phosphorus		
Field ID			STREET 200		H %	NO ₃ N ppm Rate	11	S Rate	Zn ppm	n Rate		Mn n Rate	Fe ppm	36	Cu ppm		B ppm		SS ms/cm	s	as P %	
70/30 Rain w/ Compost	7.0 1	13.1 78	78.5 1	1.8 (0.0		15	L	3.2	М	26	н	95	VH	0.7	L	0.8	M				
80/20 Rain w/ Compost	4.9 14	14.5 70	78.9 2	2.1 (0.0		14	L	2.5	М	23	н	89	VH	0.6	L	0.6	M				
70/30 Rain w/ 1inch Peat	0.8 14	14.8 74	74.2 1	1.8 9	9.0		7	VL	0.8	VL	18	М	87	VH	0.5	L	0.1	VL				
80/20 Rain w/ 1inch Peat	2.2 1	16.3 79	79.6 2	2.1 (0.0		5	VL	0.7	VL	16	М	73	VH	0.5	L	0.1	VL				

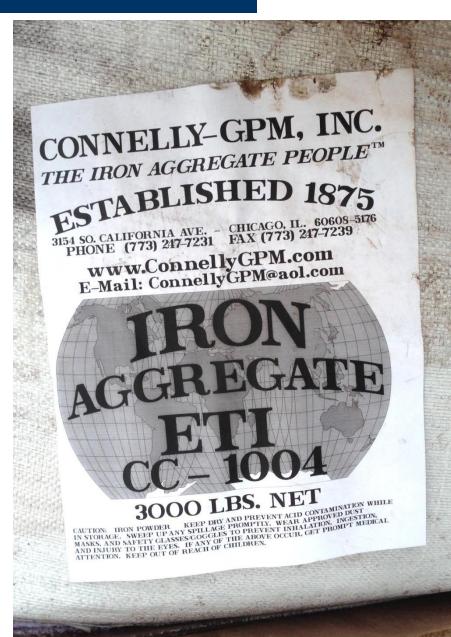
Material Specification & Testing

- Media P-Index. Revised specification limit between 10 and 30 ppm when using the Mehlich-3 test and submittal of test results [*to review agency*] at least 2-weeks prior to delivery and construction, or
- Substitution of peat moss for a portion of the compost to reduce the overall P-index to within the range specified above, or
- 3. Amendment of the media to enhance phosphorus sorption.

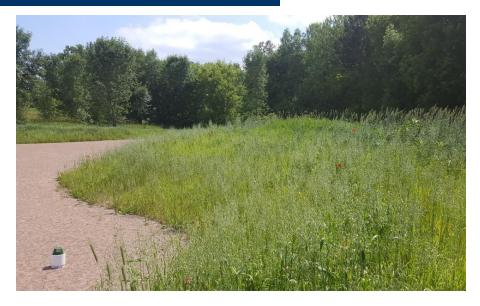
Soil media test results and a soil sample must be submitted at least 14 days prior to material delivery.

Analysis	(\$)	Standard Turnaround Time	Sample Amount Needed		
9045 pH Soil	21	4 Hours	50 grams		
ASTM D2974 Organic Matter	42	2 Days	50 grams		
Phosphorous	75	2 Days	60 grams		
365.1 Total Phosphorous	32	2 Days	20 grams		
CEC	93	3 Days	200 grams		
Grain Size	177	5 Days	200 grams		

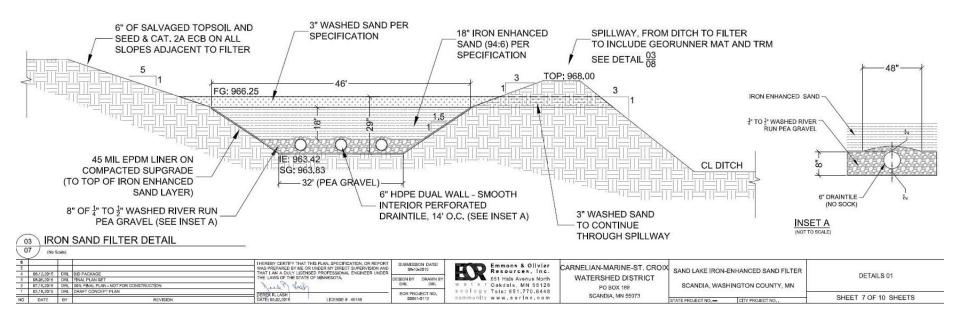
Design Variants – 80/10/10 Mix



95% ASTM C-33 Coarse Wash Sand and 5% Iron Aggregate by weight (Connelly GPM Inc., ETI CC 1004 or approved equal).

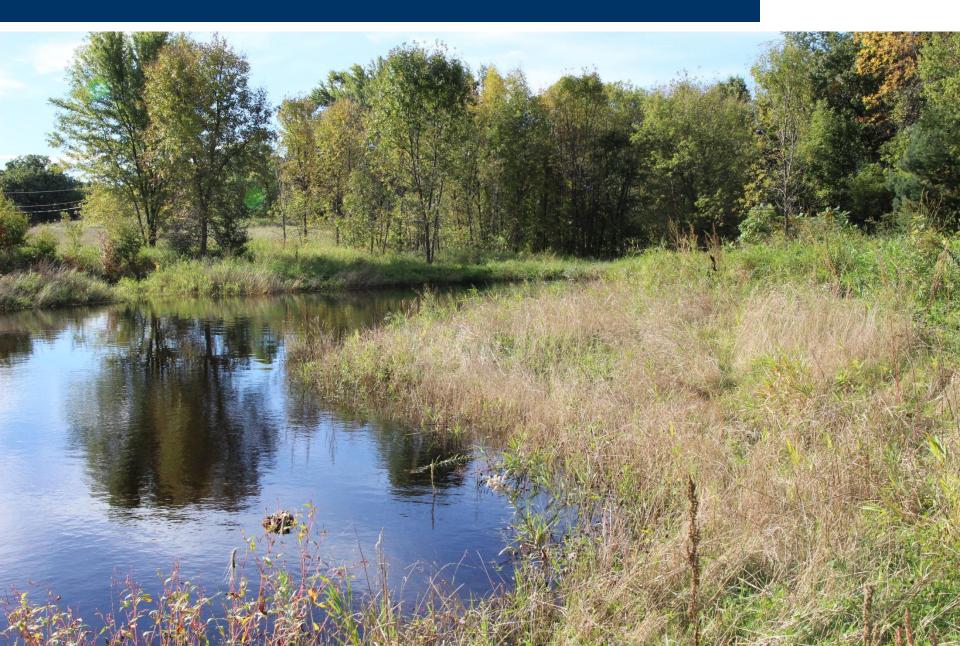

THE IRON AGGREGATE PEOPLETM

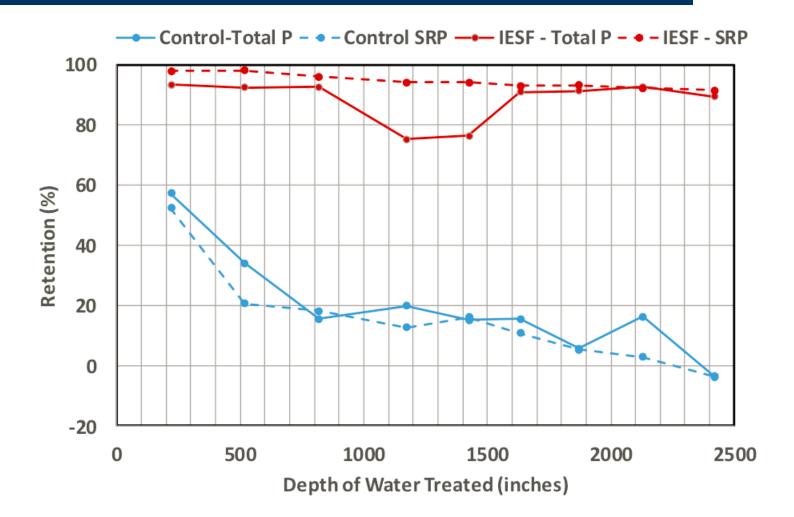
THE SOURCE TO HELP YOU IRON THINGS OUT

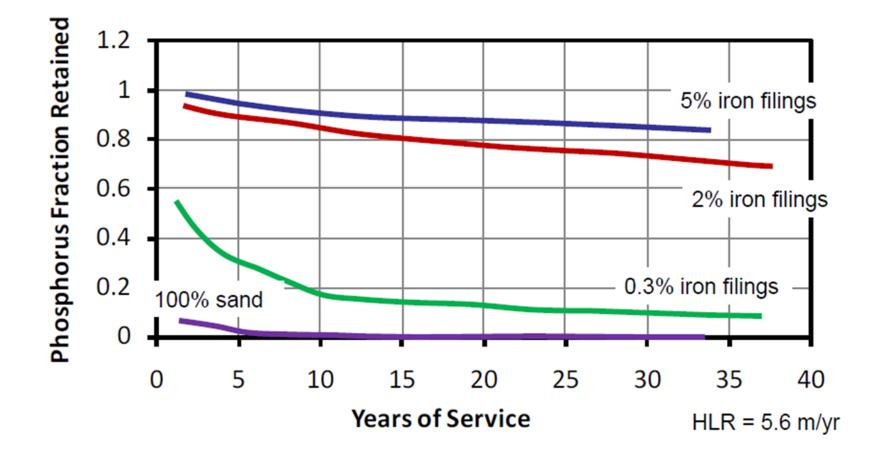


Typical cross section (top to bottom):

- 3-inches sand
- 18-inches iron-enhanced sand
- 8-inches pea gravel with perforated draintile




• 45 Mil EPDM liner



Weiss, P., Aljobeh, Z., Bradford, C., and Breitzke, E. (2016) An Iron-Enhanced Rain Garden for Dissolved Phosphorus Removal. World Environmental and Water Resources Congress 2016: pp. 185-194. doi: 10.1061/9780784479889.020

Erickson, A.J., J.S. Gulliver, and P.T. Weiss. 2007. "Enhanced sand filtration for storm water phosphorus removal, Journal of Environmental Engineering." 133 (5): 485-497.

Erickson, A.J., J.S. Gulliver, and P. T. Weiss. 2012. "Capturing Phosphates with Iron Enhanced Sand Filtration," Water Research, 46(9), 3032–3042.

Design Variants – Taconite Tailings?

DEPARTMENT OF TRANSPORTATION

Comparing Properties of Water Absorbing/Filtering Media for Bioslope/ Bioswale Design

Kurt Johnson, Principal Investigator Natural Resources Research Institute University of Minnesota Duluth

November 2017

Research Project Final Report 2017-46 Use of taconite tailings, a waste product, looks to be a viable alternative to (expensive) iron filings for enhanced P removal.

Promising news for areas like Minnesota.

ter Quality Improvements Project

ibbon - Cutting Event October 24th + 3:30pm

PRIOR LAKE

Brett H. Emmons, CEO bemmons@eorinc.com

March 21st, 2018

Principal & Founder, EOR www.eorinc.com

TRIECA 2018 CONFERENCE

Thank you to all of our 2018 gold sponsors:

trieca.com | @TRCA_TRIECA

Bioretention cells under cold climate conditions

The effects of freezing and thawing on water infiltration, soil structure, and nutrient removal

Prof. Elodie Passeport

Assistant Professor, Canada Research Chair Tier II

- **Civil Engineering**
- Chemical Engineering & Applied Chemistry

Collaborations & Funding

• Funding from

- NSERC Engage, Strategic, and CRC to E. Passeport
- NSERC Discovery to F. Rezanezhad
- NSERC CERC to P. Van Cappellen
- Thanks to
 - J. Douglas from J. Jenkins & Soil Construction
 - Town of Ajax
 - M. Vandergriendt, S. Legemaate, T. Milojevic, S. Dragana,
 Y. Li, and T. Dutta

Literature Review

Bioretention cells

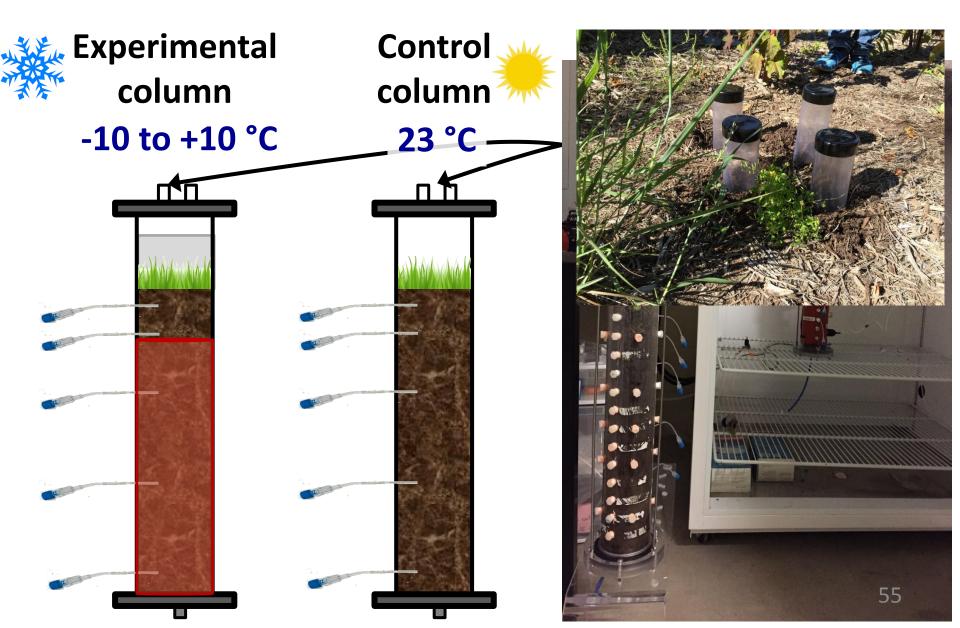
- Can remove N, P, TSS
- Variable efficiency

- Cold climate performance unknown
- Observed that infiltration increases upon thawing

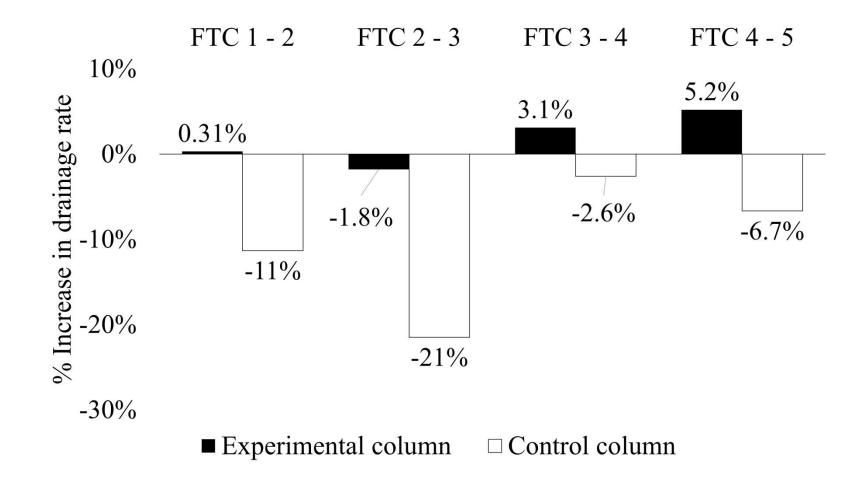
- No definitive explanations

Hunt et al. 2012 J. Environ. Eng. 138(6); Khan et al. 2012 Canadian J. Civil Eng. 39(11); Denich et al. 2013 Water 53 Quality Research J of Canada 48(4)

Research Objectives



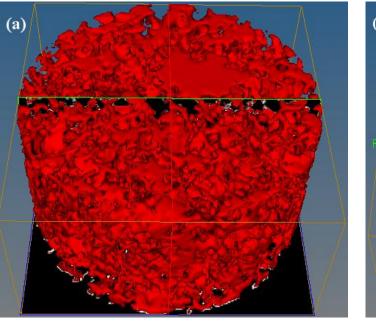
Freeze-thaw cycle effects

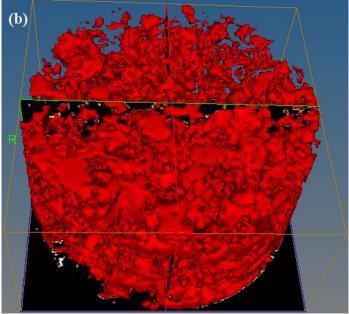

- Infiltration capacity
- Soil structure
- Nutrient removal & processes

Experimental setup

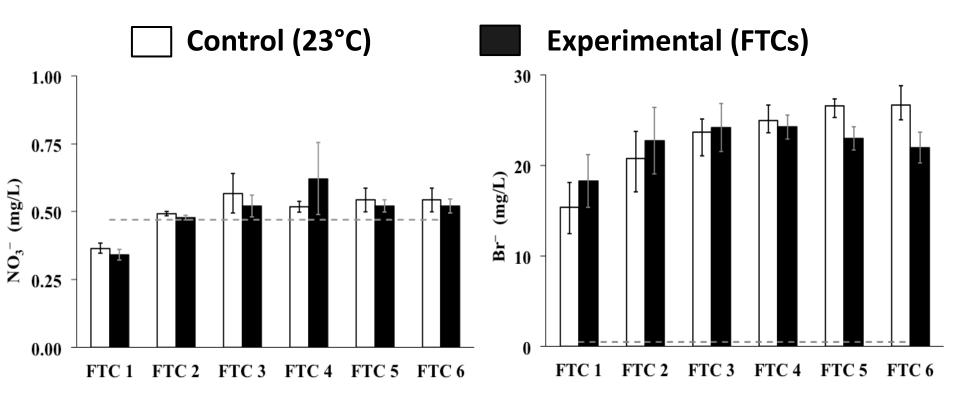
Infiltration rates

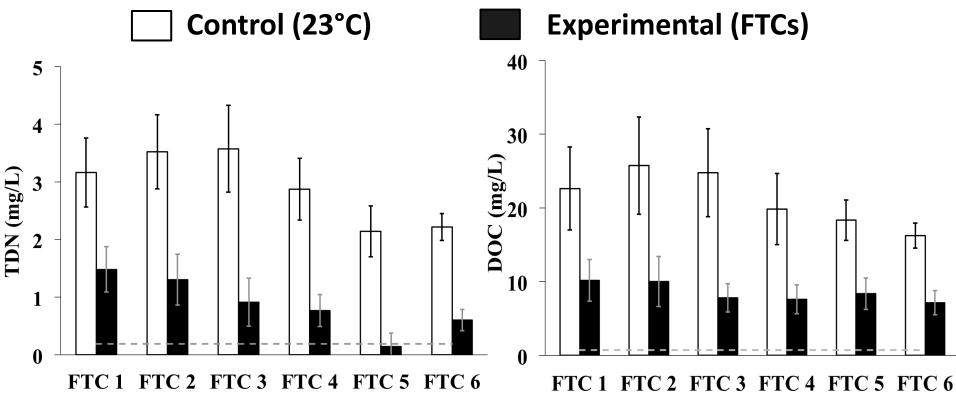
- Infiltration rates decreased in the control column (23 °C)
- Infiltration rates increased in the experimental column (FTCs)


Soil structure


Control column

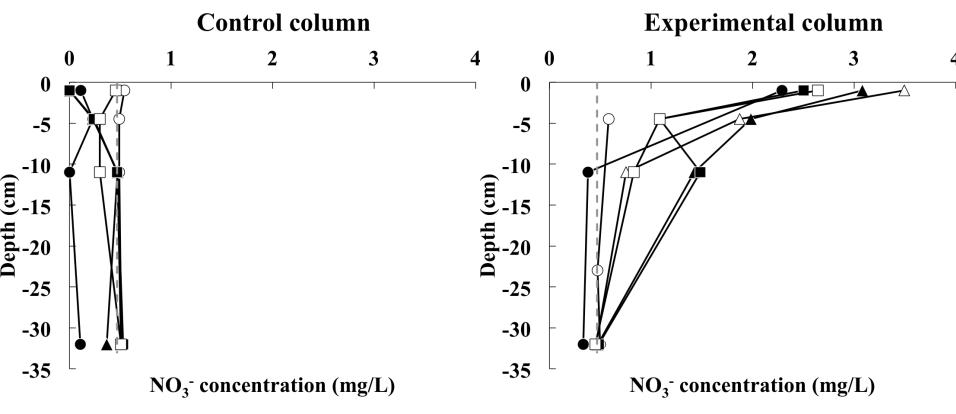
Experimental column


- After 6 experiments

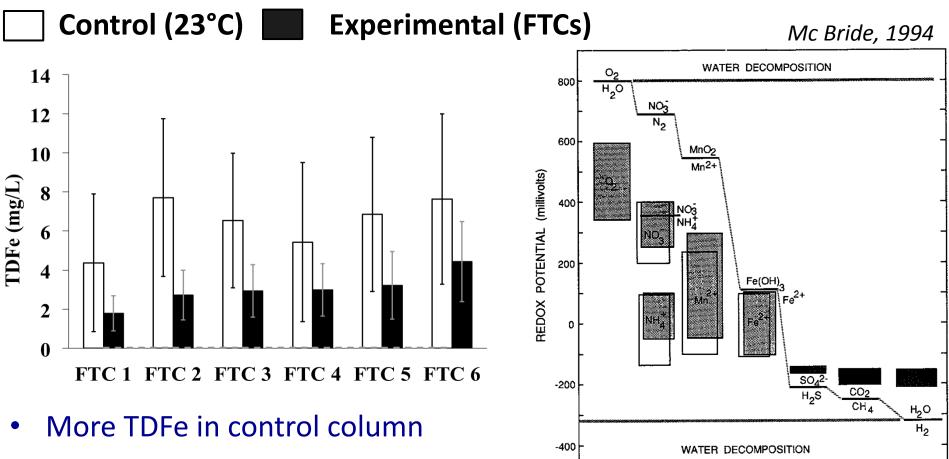

Pore size (µm²)	Control	Experimental
Maximum	2.65×10 ⁶	3.88 ×10 ⁶
Average	1.41×10 ⁴	1.76 ×10 ⁴
Median	1.38×10 ³	> 1.04×10^{3} 57

Drainage effluent chemistry

- Very low NO₃⁻ concentrations & lower than Br⁻'s
- Further elimination processes for NO₃⁻ compared to Br⁻


Drainage effluent chemistry

Outlet of control column:

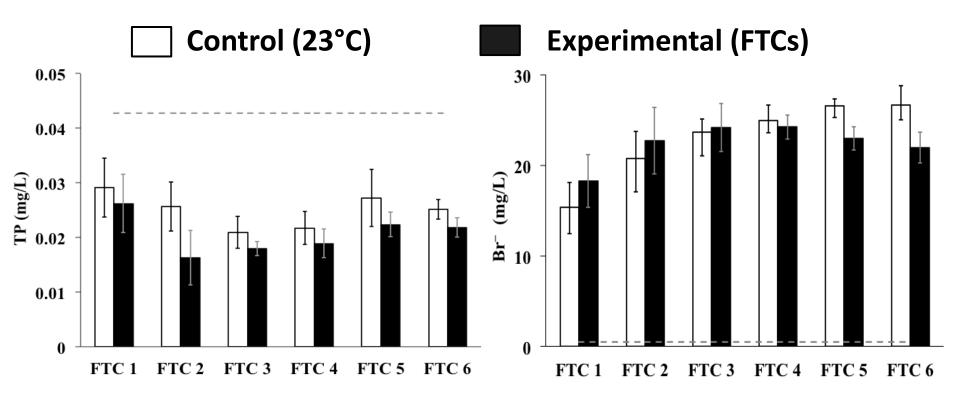

- More TDN: more DON leaching
- More DOC: faster organic matter degradation

Pore water →FTC 1 →FTC 2 →FTC 3 →FTC 4 →FTC 5 →FTC 6

- NO₃⁻ concentrations below quantification in control column (23 °C)
- NO₃⁻ concentrations higher at top of experimental column (FTCs)
- Microbially-mediated processes in both columns

Pore water →FTC 1 →FTC 2 →FTC 3 →FTC 4 →FTC 5 →FTC 6

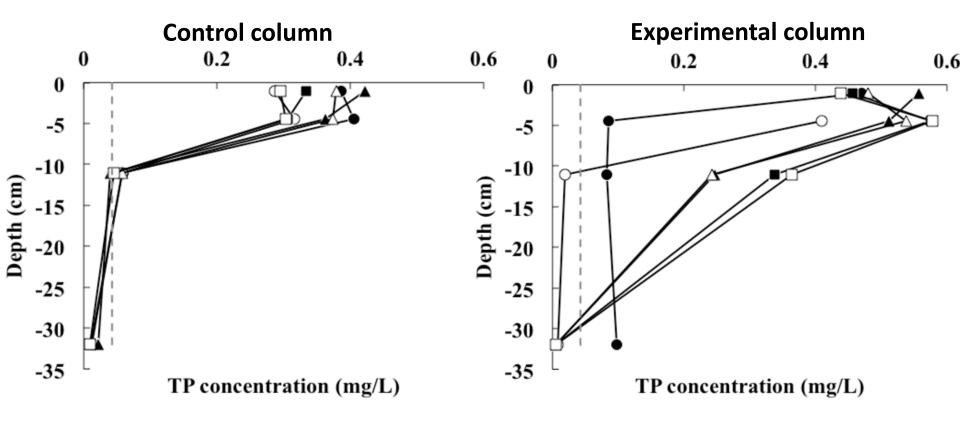
SOILS


61

REACTION SEQUENCE IN REAERATED SOILS

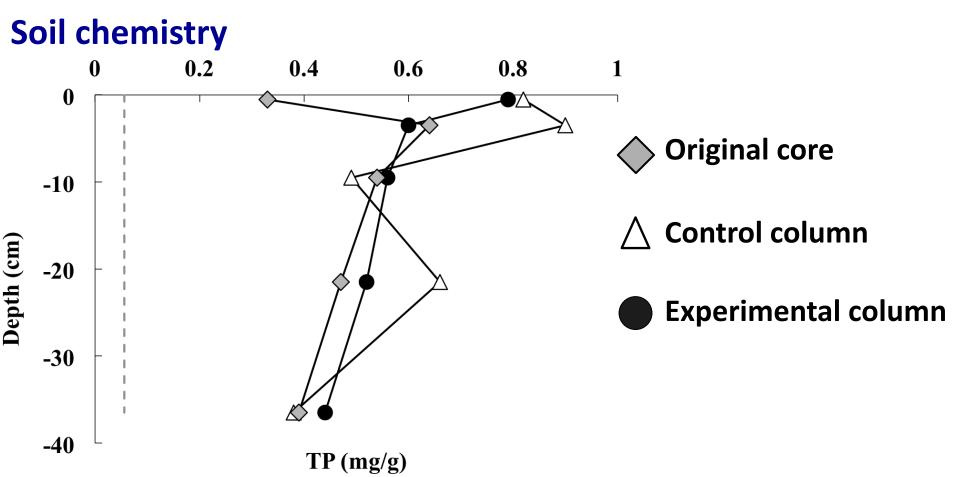
- Higher reductive dissolution of Fe oxides
- Reductive conditions in both columns

Phosphorus


Drainage effluent chemistry

- PO₄³⁻ concentrations below quantification & lower than Br⁻'s
- Further elimination processes for PO₄³⁻ compared to Br⁻

Phosphorus


Pore water →FTC 1 →FTC 2 →FTC 3 →FTC 4 →FTC 5 →FTC 6

TP concentrations in experimental column:

- were higher than in control
- increased with FTCs

Phosphorus

- More TP in control and experimental columns vs. original column
- TP accumulation in top soil
- Less adsorption in the experimental column

Removal Efficiencies							
	Control Column	Experimental Column					
Nitrate	> 98%	> 96%					
Phosphate	> 99%	> 98%					

- Very high removal efficiencies for both columns
- Slightly lower for the FTC experimental column

Summary

- FTCs result in increased infiltration rates
- Pores got larger & more connected
- Very high nitrate and phosphorus removal
- Anaerobic microbial nitrate removal
- Phosphorus adsorption in top of columns
- FTCs seemed to reduce P adsorption

Design implications

- To maintain high infiltration
 - FTC no negative effect
- To eliminate NO₃⁻
 - Internal water storage zone below freezing zone
 - Maintain high retention time
- To eliminate PO₄³⁻
 - Use Al oxides-enriched media
 - Deep media below freezing to capture desorbed P

Prof. Elodie Passeport

- Assistant Professor, Canada Research Chair Tier II
- **Civil Engineering**
- **Chemical Engineering & Applied Chemistry**

TRIECA 2018 CONFERENCE

Thank you to all of our 2018 gold sponsors:

trieca.com | @TRCA_TRIECA