TRIECA CONFERENCE

Thank you to all of our 2017 sponsors:

Media Partners

Hosts

Success of an Adaptive Management Program for Large Infrastructure Projects: A Case Study

Boyne Trunk Sanitary Sewer

Civil Engineering Award, Regional

Municipality of Halton

By Michael F.W. Tredree Environmental Scientist

March 22, 2017

What is "Adaptive Environmental Management"?

1. Conceptualize

- Define initial team
- Define scope, vision, targets
- · Identify critical threats
- Complete situation analysis

5. Capture and Share Learning

- Document learning
- · Share learning
- · Create learning environment

Conservation Measures Partnership Open Standards

2. Plan Actions and Monitoring

- Develop goals, strategies, assumptions, and objectives
- Develop monitoring plan
- · Develop operational plan

4. Analyze, Use, Adapt

- · Prepare data for analysis
- Analyze results
- Adapt strategic plan

3. Implement Actions and Monitoring

- Develop work plan and timeline
- Develop and refine budget
- Implement plans

The Project

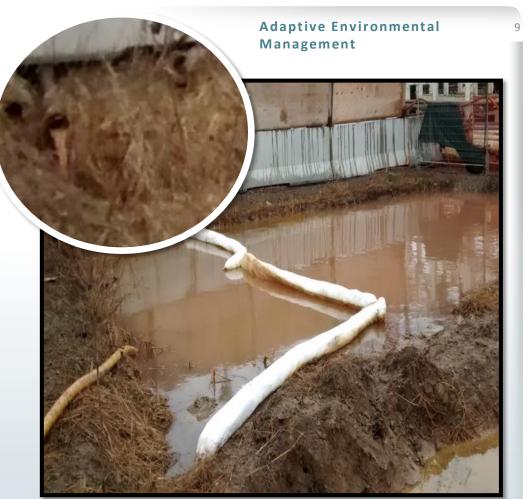
- In 2008, Halton Region retained Dillon Consulting to complete the environmental assessment (EA) and subsequent design and construction phases for a large diameter (up to 2400mm) gravity sewer.
- Approximately 8km of mining and trench construction with various water discharge locations throughout the alignment.
- This project was recognized with a 2016 Civil -Infrastructure Project of the Year Award by the Hamilton/Halton Engineering Week Committee.
- OPWA Project of the Year Award (Environment, greater than \$50 Million Category).

The Two Focal Discharge Zones

North Discharge Location:

South Discharge Location:

Step 1: Conceptualize the program


- Soil type = red clay/shale.
- Fine particles require longer residence time to settle out.
- Industrial product may be present.
- **Understand contractor's** design for treatment and discharge waters.

Step 2: Plan Actions and Monitoring

- Schedule (Mon, Wed, Fri).
- Turbidity (within 25 mg/L or 8 NTU of baseline).
- Visual indicators for industrial product release.
- Sample discharge water and compare results to PWQO and PTTW conditions.

Step 3: Implement Actions and Monitoring

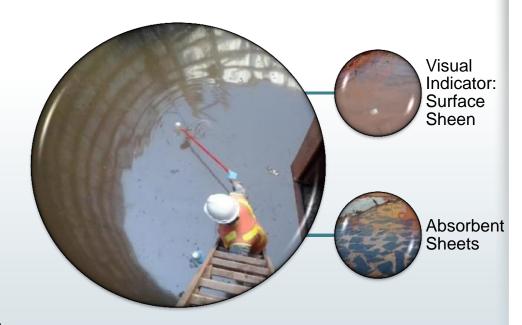
- Baseline parameters for small order streams in the area determined in field under natural conditions*:
 - Turbidity (7 25 NTU)
 - Ph: 7 7.5

^{*} Natural conditions were not influenced by participation or melt events

Step 4: Analyze and Interpret

Criteria: ONTARIO PROVINCIAL WATER QUALITY OBJECTIVES (PWQO).

Ref. to MOEE Water Management document dated Feb. 1999


Note for Metal Analysis: Detection Limit was raised due to matrix interferences.

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)										
ID ID	3, 23,1103			<u> </u>			,	,		
Sampling Date			2014/12/08	2015/01/09	2015/03/12	2014/12/08	2014/12/22	2015/01/09	2015/02/11	2015/03/13
ouniping outc			2011/12/00		2015/05/12	2011/12/00	2014/12/22	1015/01/05	2010/02/11	2010/00/10
	Units	Criteria	CC2 (Background)				<u> </u>			
Metals	-									
Dissolved (0.2u) Aluminum (ug/L	15	<5	<5	12	<5	<5	<5	<5	9
Dissolved Calcium (Ca)	mg/L		220	285	58.4	317	243	251	271	149
Chromium (VI)	ug/L	1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dissolved Magnesium (Mg)	mg/L		111	174	14.8	120	89.3	96.9	104	51.8
Total Aluminum (Al)	ug/L		730	930	470	110	16000	16000	1700	590
Total Antimony (Sb)	ug/L	20	<0.50	<5.0	<0.50	<2.5	0.98	<2.5	1.8	<0.50
Total Arsenic (As)	ug/L	100	<2.0 (1)	<10	<1.0	<5.0	5.1	9.6	2.3	<1.0
Total Barium (Ba)	ug/L		120	150	41	20	98	190	50	58
Total Beryllium (Be)	ug/L	11	<0.50	<5.0	<0.50	<2.5	0.75	<2.5	<0.50	<0.50
Total Bismuth (Bi)	ug/L		<1.0	<10	<1.0	<5.0	<1.0	<5.0	3.2	<1.0
Total Boron (B)	ug/L	200	120	130	23	6300	7400	8100	6700	2900
Total Cadmium (Cd)	ug/L	0.2	<0.10	<1.0	<0.10	<0.50	0.45	<0.50	0.37	0.12
Total Calcium (Ca)	ug/L		240000	310000	56000	290000	280000	390000	300000	160000
Total Chromium (Cr)	ug/L		<5.0	<50	<5.0	<25	20	<25	<5.0	<5.0
Total Cobalt (Co)	ug/L	0.9	0.86	<5.0	<0.50	<2.5	8.4	14	2.4	0.83
Total Copper (Cu)	ug/L	5	4.8	<10	5.4	<5.0	31	25	39	2.5
Total Iron (Fe)	ug/L	300	2700	1500	530	<500	20000	22000	3500	560
Total Lead (Pb)	ug/L	5	0.92	<5.0	0.89	<2.5	14	30	7.5	<0.50
Total Lithium (Li)	ug/L		37	63	<5.0	780	730	810	700	290
Total Magnesium (Mg)	ug/L	-	120000	190000	15000	120000	95000	110000	100000	58000
Total Manganese (Mn)	ug/L	-	1400	610	130	59	1400	1500	350	770
Total Molybdenum (Mo)	ug/L	40	0.75	<5.0	1.1	6.2	7.2	6.4	9.3	2.7
Total Nickel (Ni)	ug/L	25	1.5	<10	<1.0	<5.0	24	28	6.3	<1.0
Total Potassium (K)	ug/L	-	11000	12000	14000	37000	40000	44000	43000	19000
Total Silicon (Si)	ug/L	-	5200	6900	2500	3500	24000	29000	6000	3000
Total Selenium (Se)	ug/L	100	<2.0	<20	<2.0	<10	<2.0	<10	<4.0	<2.0
Total Silver (Ag)	ug/L	0.1	<0.10	<1.0	<0.10	<0.50	0.24	<0.50	<0.10	<0.10
Total Sodium (Na)	ug/L		750000	1100000	450000	870000	710000	770000	730000	390000
Total Strontium (Sr)	ug/L	-	2800	3900	340	12000	11000	11000	13000	5900
Total Tellurium (Te)	ug/L	-	<1.0	<10	<1.0	<5.0	<1.0	<5.0	<1.0	<1.0
Total Thallium (TI)	ug/L	0.3	<0.050	<0.50	<0.050	<0.25	0.14	<0.25	0.089	<0.050
Total Tin (Sn)	ug/L	-	<1.0	<10	<1.0	<5.0	1.3	<5.0	2.1	<1.0
Total Titanium (Ti)	ug/L	-	19	<50	12	<25	370	200	22	19
Total Tungsten (W)	ug/L	30	<1.0	<10	<1.0	<5.0	<1.0	<5.0	<1.0	<1.0
Total Uranium (U)	ug/L	5	4.4	5.4	0.31	1.3	1.6	1.9	1.4	0.96
Total Vanadium (V)	ug/L	6	1.6	<5.0	1.5	<2.5	25	29	4.1	1.5
Total Zinc (Zn)	ug/L	30	14	<50	12	44	220	190	42	7.0
Total Zirconium (Zr)	ug/L	4	<1.0	<10	<1.0	<5.0	<5.0 (1)	6.9	1.8	<1.0

Step 5: Report, Share and Discuss the Findings

- Is the project site in compliance?
- If not, notify the contractor immediately and prepare a field instruction form to update the contractor of their status and obligation.
- Discharge halted at site multiple times to revise treatment to meet compliance.
- Report spill if necessary.

SOUTHERN DISCHARGE LOCATION

Step 5: Report, Share and Discuss the Findings

- Is the project site in compliance?
- If not, notify the contractor immediately and prepare a field instruction form to update the contractor of their status and obligation.
- Resolve issues before continuing to discharge water.

NORTHERN DISCHARGE LOCATION

Adaptive Environmental

Conceptualize the Management Improvements by Knowing the **Technology**

Non compliance parameters:

- TSS and F3 Petroleum **Hydrocarbons (PHC).**
- Notify contractor of noncompliance and that dewatering cannot continue until efforts have been made resulting in compliance.

Conceptualizing Improvements on North Discharge Area

- Increase residence time with ballast tanks (P1). Set up draining to geobag pond area (P2) separated by absorbents and elevated portion to allow pooling and sediment deposition (P3).
- Draining to lower pond area with coir matting, and absorbents leading to the discharge location (P4).

Continue Compliance Management Monitoring, Analysis and Discussion

- Ph buffer
 - (alkaline conditions require citric acid/ph down).
- Strong finish for the project.
- Restore site conditions and rehabilitate according to restoration plans and site standards (Agricultural, Table 1).
- Contractor must remove contaminated soils, regrade and leave site as stated in the client agreement.
- Responsible Environmental Management and contractor budget.

Critical Points of Emphasis

- Establish a regular monitoring schedule but be flexible for unannounced testing for compliance and/or emergency response.
- Debunk "Forgiveness Theory".
- Be firm and respectful to contractors.
- Use science and regulation to monitor contractor compliance.
- Clean and restore sites to established standards.
- Take only pictures and leave only footprints.

Questions and Discussion

Thank You.

Please, consider Dillon Consulting for your Municipal infrastructure design and construction projects.

