TRIECA 2018 CONFERENCE

Thank you to all of our 2018 gold sponsors:

trieca.com | @TRCA_TRIECA

IMPLEMENTING LOW IMPACT DEVELOPMENT IN SOUTH KOREA

2018 TIECA Conference Toronto, Canada March 21, 2018

Copyright Trinkaus Engineering, LLC

Steven Trinkaus

- Invited presenter on LID & water quality issues in Taiwan, South Korea & China
- Consultant to Pusan National University, Land & Housing Institute, Korean Water & HECOREA, LLC in South Korea and Shenzhen University in China for LID
- > Licensed Professional Engineer (CT)
- > Over 37 years in the Land Development Field with 17 years applying LID

What is really happening elsewhere in the world

Annual rainfall amounts are fairly consistent,

Rainfall intensities are increasing,

Rainfall durations are becoming shorter, so more rainfall occurs in a shorter time period,
 Over a given impervious area, runoff occurs faster at a higher rate and significantly higher runoff volume

Extreme Rainfall Event in South Korea

- > August 2014 rainfall event in Busan Area,
- > 14.2 cm of rain in 1 hour
- > Highest Rainfall Intensity = 2.37 cm per 10 minutes
- Occurred in Red River Watershed (channelized stream through center of Busan)
- > 66% of annual rainfall occurs between mid June and Mid August
- > Highly urbanized environment

August 2014 Rainfall Event 14.2 cm in an hour

August 2014 Rainfall Event 14.2 cm in an hour

2014년 8월 25일 부산시 홍수 피해 지역 현황

홍수피해 현장조사 -산사태, 구조물 파손, <u>멘흞</u>, 지하철 등 피해

대천천 교량 붕괴

동래역 지하철 침수

북구 화명종 산성토/ 보도 붕괴

북구 대천천 자전거길

맨홈 파괴 (부산대앆)

Korean Smart GI & LID Research Group

- > History of the Research Group:
- > Founder/Principal Researcher:
 - > Dr. Hyun-Suk Shin of Pusan National University
- > Created in 2011:
 - Created Work Plan and received funding from South Korean Government,
 - Reached out to LID experts in the US and other countries,
 - Construct "State of the Art" demonstration project and Research Facility for GI/LID

Goals of the Korean LID Project

 Analysis of Korean Environmental Conditions necessary for consideration of LID,
 Rainfall Evaluation,

Soils Evaluation,

- Topographic Considerations,
- Water Quality of Non-Point Source Runoff in Urban & Agricultural Areas

Key Targets of Korean LID

Urban Flood Control, Urban Water Conservation, NPS Pollution Control, River & Ocean Management, Climate Change, Green Space & Community Improvements, Green Jobs & Economy, Construction & Building Codes

Rendering of Smart GI & LID Research Facility (PNU)

LID Building and Street Planters

Building Planter & Street Side Planter on left Rain Barrels & Street Side Planter on right

Pavers and Porous Concrete

Interlocking Concrete Pavers on left Porous Concrete on right

Porous Asphalt & Monitoring Diagram

Porous Asphalt Pavement on left Diagram of Pavement Monitoring System on right

Bioretention Systems

Bioretention systems planted with perennials

Street side Planter & Green Roof Systems at LID Center

Street Side Planter on left Portion of Green Roof on right

Monitoring Systems

- All of the LID & conventional systems are fully monitored to provide data,
- During real or artificial rainfall events, data is taken at 1 minute intervals in real time:
 - Rainfall Amount, Rainfall Intensity,
 - Infiltration Amount, Runoff Amount,
 - Depth & wetting front as rainfall infiltrates,
 - Summary data (rainfall, infiltration & runoff) for storm duration,
 - Water quality

Field Monitoring Equipment

Evaluating Green Roofs

Research to determine evapotranspiration rate from a green roof:

- 1 sq. meter of soil & plants
- Tray under soil measures weight
- Lower Tray underneath collects in filtrated rainfall
- Apply synthetic rainfall to system
- Determine evapotranspiration rate by substrating infiltrated rainfall & water stored in soil from rainfall applied

Interior Research Facility

- Hydraulic beds to conduct column studies of various LID systems,
- Artificial Rainfall Simulators developed by Dr. Shin of Pusan National University,
- Using radar to measure size and frequency of actual raindrops from Rainfall Simulator.
 Data is automatically downloaded to excel file, color coded for size and frequency of rain drops

Interior Research Facility

Intensity of pr Precipitation

Radar reflect MOR Visibility Measuring inf Signal amplit Number of de Temperature Heating curro Sensor volta Sensor statu Kinetic Enerri

Static Into	IS CONTRACTOR OF THE OWNER OF THE	
zipitation (mm/h) nce stat (mm) SYNDP WaWa SYNDP WaWa METAR/SPECI NWS Wy (dB2) m) rval te of Lasetband ected particles n sensor (°C) tr (A) e (V) (mm/h)	Value 0016.440 0002.2 89 90 GR A 30.906 00091 00080 22456 13502 025 2.00 23.9 0 0013.60	
		0.050

- Using Radar to measure size, & frequency of rainfall event created by rainfall simulator
- Rainfall simulator can be set to deliver a pre-determined amount of rain in a specific time frame. It can also vary the intensity of the r ainfall event over time. Swivel heads allow for wind to be applied to rainfall event to more closely mimic a natural event

Dr. Shin & Research Group at official opening of Center in June 2016

Classification of ecosystem services

Provisioning Services	Regulating Services	Cultural Services		
Products obtained from ecosystem	Benefits obtained from regulation of ecosystem processes	Nonmaterial benefits obtained from ecosystems		
 Food Fresh water Fuel wood Fiber Biochemicals Genetic resource 	 Climate regulation Disease regulation Water regulation Water purification 	 Spiritual and religious Recreation/Ecotourism Aesthetic Inspirational Educational Sense of place Cultural heritage 		
Supporting Services				

Services necessary for the production of all other ecosystem services

- Soil formation
- Nutrient cycling
- Primary production

MA. (2005). Millennium Ecosystem Assessment: ecosystems and human well-being: synthesis. Washington, D.C: Island Press.

1 -

Impact of urbanization on water quality

Impacts of climate changes and urbanization

Stormwater management

Sizing of LID/GI facility

BMPs		Sizing
Constructed wetland	Constructed wetland	
Infiltration facility	Permeable pavement Infiltration basin Infiltration trench	WQv
	Vegetated strip Vegetated swale	WQF
Vegetation facility	Bioretention Planters Tree box filter	WQv

WQv (Water Quality Volume): frequency of 80% or 90% rainfall event

WQF (Water Quality Flow): frequency of 80 or 90% rainfall intensity

Applicable LID/GI facility with soil type

Soil type	Applicable LID facility		
Туре А	6		
Туре В, С	Infiltration trench	Infiltration basin	Planters
Type D	Bioretention	Rain garden	Vegetated swale
	Constructed wetland	Ponds	Underground storage tank

Stormwater management in Korea

- 2004: Comprehensive measures in nonpoint source management
- 2006: National water environment management plan: BMPs for EIA projects
- 2006~2014: NPS Demo projects: assessment of 45 BMPs
- 2014: Modified comprehensive measures in nonpoint source management: LID/GI for water circulation and NPS management
- 2014~present: GI project for public institution
- 2014~present: Civic participation project for NPS management
- 2014~present: Demo projects of stormwater runoff reduction from city areas: 2 cities Osong and Jeonju
- 2014: Seoul Ordinance of LID in Seoul metropolitan areas
- 2016: National water environment management plan: LID and GI for urbanized areas
- 2016: Water Circulation City:
 - Select 5 cities in 2015: Gwangju, Daejeon, Gimhae, Ulsan, Andong
 - All cities > population of 100,000
 - Provide central government finance of 50%
 - Enact LID Ordinance for all of water circulation cities

Cities applied or planned LID/GI

GI Techniques used in urban areas

Case 1: Osong industrial areas

GI	Block A(No)	
Infiltration planter	42	
bioretention	1	
Tree box filter	66	
Infiltration device		K
Infiltration trench	-	A COL
Infiltration inlet	-	A A A A A A A A A A A A A A A A A A A
Permeable block	19,917 m²	* 1.*** 1.***

inter

Tree box filter

124

Infiltration device Infiltration trench

Infiltration inlet

Permeable block

Case 2: Cheonju city (urban area)

GI	No. (area)	
Bioretention	4 (337.0m²)	
Tree box filter	15 (29.7m²)	
Infiltration planter	1,691.9 m²	
Infiltration device	40 (33.2m²)	
Infiltration inlet	30 (44.7m²)	
Infiltration trench	131.4 m ²	
Permeable block	17,668.50 m²	
Green roof	5 (695.0m²)	

Case 5: LID/GI in Seoul: Goal for rainwater management until 2050

620mm Urban Runoff/1,550m Annual Rainfall

397.1mm/yr in 2014

Source: Seoul Metropolitan (2015. 4. 8)

575.4mm/yr in 2014

Water Environment Comprehensive Management Plan 2020 (mm/year)

757.0mm/yr in 2014

Case 6: Green LID campus (KNU)

Changes of water quality and runoff flow before/after LID application

Before LID application

After LID application

Tree box filter

BK21플러스⁺ UD/GSI Research Team

Thank you

Lee-Hyung Kim, Ph.D, Professor

- Director of BK21 Plus LID/GSI Research Team by Ministry of Education
- Dept. of Civil & Environ. Engg., Kongju National University, Korea.
- Tel: +82-41-521-0287
- E-mail: leehyung@kongju.ac.kr

LID Retrofits - Land & Housing Institute (LHI)

- Dr. Hyun of LHI provided the following slides (& more) to me of LID retrofits recently installed at the Institute Research Center in Daejeon, South Korea and I thank him for this.
- In 11/14, Dr. Hyun and I walked the LHI campus in the rain and I pointed out the locations for possible LID retrofits. It was great to see them actually implemented.

Overhead View of Campus

LID 단지재생 조성 과정

추가 영상

Plan showing Drainage Patterns

II LID 단지재생 시범사업 효과

🔼 모니터링 지점 선정

모니터링 지점 선정

LHI 연구단지 내의 강우-기상을 대표하는 지점과 유출유량을 각 시범구역별로 구분할 수 있는 지점을 선정한다.

강우 기상 모니터링

- 목적: 신뢰성_있는_기초 수문자료의 확보

- 항목: 강우, 풍향, 풍속, 온·습도 자료를 획득

- 설치위치: 단지내의 건물 옥상

유출량 모니터링

- 목적: 각 시범구역별 유출 유량을 모니터링 - 항목: 수심, 유속, 유량

- 설치위치: 우배수 현황과 빗물 흐름에따라 구역별 모니터링이 가능한 지점

수질 모니터링

목적: 각 시범구역별 유출 유량을 모니터링 항목: BOD, TOC, SS, T-N, T-P 채수시간 간격: 0, 15, 30, 45, 60분 (단, 유입지점은 발생시점) 모니터링 위치: LID 시설 도입전: 유출 4개 지점 LID 시설 도입후: 유입 4, 유출 4개 지점

LH토지주택연구원 LID 시범단지 공사 36

TRINKAUS ENGINEERING

LE

Bioretention Retrofit

 \mathbf{V}

LH토지주택연구원 LID 시범단지 공사 3

LID 단지재생 조성 과정

🔟 빗물정원

LOW IMPACT SUSTAINABLE

DEVELOPMENT TRINKAUS ENGINEERING

LH토지주택연구원 LID 시범단지 공사 4

- 건물준공 도면에 누락되어 있던 지하 공동구 발견으로 설계변경

- 집수면적: 1.402 m², 시설면적: 642 m², 저류용량: 205 m³

LID 단지재생 조성 과정

🔟 빗물정원 - 빗물정원 E

- 보행성 향상 및 음지 조건등을 고려하여 설계변경

공사비용: 121,879,205원 (재료비: 45,435,455원, 노무비: 72,233,303원, 경비: 4,210,447원)

LH토지주택연구원 LID 시범단지 공사 7

LH토지주택연구원 LD 시범단지 공사 6

- 심미성을 높이기 위한 식생추가 및 시공 시 현재 설치되어 있는 화강석판석의 훼손이 불가피하여 설계변경 실시
- · 집수면적: 908 m², 시설면적: 123 m², 저류용량: 44 m³
- · 공사비용 : 64,679,851원 (재료비 : 29,346,346원, 노무비 : 33,736,296원, 경비 : 1,597,209원)

LH

빗물정원(원형)

Bioretention Retrofit

LID 단지재생 조성 과정

LID 단지재생 조성 과정

🔟 빗물정원(원형) - 띠형빗물정원

Bioretention Retrofits

LID 단지재생 조성 과정

🚺 식생도랑

LID 단지재생 조성 과정

<u> (</u>)물정원(입구)

LH토지주택연구원 LID 시범단지 공사 🧕

LH

LH토지주택연구원 LID 시범단지 공사 11

Bioretention Retrofits

LID 단지재생 조성 과정

🔟 빗물화단

LID 단지재생 조성 과정

🔟 빗물관리 주차장

티파기완료

LH

Permeable Pavers & Bioretention Retrofit

LID 단지재생 조성 과정

🔟 투수성블록포장(차도)

LH

LH토지주택연구원 LID 시범단지 공사 29

LID 단지재생 조성 과정

遁 변경 전 후

LH

LH토지주택연구원 LID 시범단지 공사 32

III 시범단지의 도시재생 활용

🔟 교육 및 견학(17.10.26 LID 시범단지 준공식 및 심포지움)

LH토지주택연구원 LID 시범단지 공사 52 후

LE

Asan Tangjeong New Town Project

- > Developed by Land and Housing Corporation
- LID research systems and stormwater management design by Land and Housing Institute,
- 1st widespread application of LID concepts in urban development is South Korea,
- > Asan Tangjeong project encompasses 1.75 sq.km (435 acres)

Asan Tangjeong New Town Project

- > Home Building District = 0.54 sq.km (30.7%)
- Commercial/Business District = 0.32 sq.km (18.4%)
- > Public Facilities District = 0.86 sq.km (48.8%)
- Projected Population Density = 104 persons per ha (42 person per acre or 17,610 people for the entire project)
- > Green Ratio = 25%

City of Asan, South Korea

Picture of before construction

Existing Conditions of Site - Fall 2012

Picture of construction in progress (April. 2014)

Conditions - Fall 2014

Site Conditions - July 2016

Site Conditions

> Soils:

> Most soils on the site have high percentage of clay,

- > Other soil types is coarse stratified sands,
- > Groundwater Depths:
 - Groundwater depths on the site vary between 3.8 m and 5.0 m below the ground surface,
 - > Average groundwater depth is 4.4 m,
 - > A vertical separation of approximately 2.5 to 3 m will be provided from the bottom of a LID system to the groundwater table

Hydrologic Design Requirements

- > Water Quality/Runoff Volumes:
 - Use LID systems to filter runoff to reduce pollutant loads to Maximum Extent Possible
 - The initial 5 mm (0.2") of rainfall must be infiltrated back into the ground
 - > This standard was set forth by the Ministry of Environment in South Korea to control non-point source runoff,
 - Rainfall events of 5 mm or less constitute 60% of total annual rainfall events in South Korea according to Korean Meteorological Administration.

LID Strategies to be used in the Asan Tangjeong Project

> Rainwater Harvesting:

- Rainfall on building roofs will be directed to storage tanks located in the basements of the building,
- The harvested rainfall will be used for watering of landscaped areas, public parks and for cleaning of streets within the Asan Tangjeong project,
- > A total of five rainwater harvesting systems will be installed for the project:
 - > 3 each with a capacity of 600 tons (19,230 cubic feet) of storage
 - > 2 each with a capacity of 1,200 tons (38,460 cubic feet) of storage
 - > The total storage volume is 431,521 gallons

LID Strategies to be used in the Asan Tangjeong Project

> Infiltration Swale,

To be used in highly urbanized area along roads
Infiltration L Drain,

- > To be used in highly urbanized area along roads
- > Vegetation Swale,
 - > To be used in less dense areas of the development
- > Urban Wetlands,
 - > Used for polishing of stormwater prior to discharge

Location of LID systems

LID Demonstration Project Asan Tangjeong

Infiltration trench bedded in sand

Rainwater harvesting tank for runoff from elevated highway

Standard pavers Permeable pavers

Rain Garden Installation

LID facility at KNU campus

(1) Facility & Monitoring site

LID facility	Land Use	Basin Area (m²)	Capacity (m³)	Design Rainfall (mm)
Rain garden (RG)	Roof	200	28	8
Infiltration Trench (lT)	Road	520	3.9	25
Tree Box Filter-1 (TBF-1)	Parking lot	450	1.8	5
Tree Box Filter-2 (TBF-2)	Road	48	45	10
Small Wetland-1 (SW-1)	Parking lot	323	27	5
Small Wetland-2 (SW-2)	Parking lot	424	29	5

(2) Monitoring Results

■ Rainfall characteristic of Chunan, Korea

Sı

No.	Event Date	ADD (day)	Total Rainfall (mm)	Total Rainfall Duration (hr)	Total Runoff Duration (hr)	Time Before Runoff starts (hr)	Time Before outflow st arts (hr)				
nfiltra	tion Trenc	h (IT)									
E-1	04/27	9.3	6.5	5.63	4.73	0.90	3.50				
E-2	05/11	3.5	8.5	2.58	2.16	0.41	1.57				
ree Box Filter-1 (TBF-1)											
E-1	04/17	3.9	3.0	2.00	0.50	1.38	0.00				
E-2	04/27	9.3	6.5	5.23	2.67	2.57	0.00				
E-3	05/11	3.5	18.0	6.12	4.17	1.95	1.02				
nall V	Wetland-1 (SW-1)									
E-1	04/17	3.9	3.0	2.18	0.92	1.27	0.77				
E-2	04/27	9.3	6.5	5.65	4.67	0.98	0.30				
E-3	05/11	3.5	9.5	4.33	2.50	1.83	0.30				
E-4	06/02	7.3	2.0	1.25	0.50	0.75	0.28				
nall V	Vetland-2 (SW-2)									
E-1	04/17	3.9	4.0	3.92	2.75	1.17	0.83				
E-2	05/11	3.5	7.5	2.15	1.73	0.41	0.58				
E-3	06/02	7.3	2.0	1.25	0.92	0.50	0.67				

Pollutant Load Evaluation

Inflow and Outflow EMC

	No.		TSS	BOD	ന്ന	Oil0 & Grease	TN	TP	TotalCu	TotalZn	TotalPb
Infiltration Trench (IT)	E-1	In	85.6	384	249.4	0.7	539	0.65	0.033	0267	0.036
		Out	11.1	23.8	1069	02	4.80	020	0.024	0283	0.024
	E-2	In	1024	19.0	1960	TBU	3.39	025	TBU	TBU	TBU
		Out	25.1	109	25.1	TBU	3.16	0.12	TBU	TBU	TBU
Tree Box Filter-1 (TBF-1)	E-1	In	85.7	8.8	99.4	0.9	5.26	0.54	0.055	0.523	0.065
		Out	0.0	0.0	0.0	0.0	0.00	0.00	0.000	0.000	0.000
	E-2	In	101.7	39.1	250.8	0.5	6.18	0.82	0.090	0.250	0.083
		Out	0.0	0.0	0.0	0.0	0.0	0.0	0.000	0.000	0.000
	E-3	In	84.9	202	115.4	1.0	3.06	0.31	0.142	0.194	0.179
		Out	92	5.4	27.7	0.6	0.8	0.1	0.147	0.214	0.146
	E-1	ln	200.3	19.7	228.6	1.1	8.86	0.54	0.082	0.618	0.066
		Out	97.3	41.7	242.2	0.3	5.23	0.43	0.059	0.352	0.035
0 11	E-2	In	73.0	26.0	115.4	1.3	5.35	0.50	0.050	0.276	0.039
Small Wetland-1		Out	34.3	372	210.0	0.7	3.22	0.50	0.040	0.272	0.035
(SW-1)	E-3	In	136.8	22.1	189.3	1.6	276	0.37	0.057	0.597	0.137
		Out	25.7	73.5	15.7	02	0.54	1.10	0.032	0.173	0.043
	E-4	In	TBU	TBU	TBU	TBU	TBU	TBU	TBU	TBU	TBU
		Out	TBU	TBU	TBU	TBU	TBU	TBU	TBU	TBU	TBU
	E-1	ln	131.2	20.8	182.1	1.1	9.07	0.51	0.072	0.414	0.045
Small Wetland-2 (SW-2)		Out	76.9	152	128.9	0.9	6.90	0.39	0.057	0.362	0.032
	E-2	In	108.0	17.8	158.1	TBU	4.71	0.27	TBU	TBU	TBU
		Out	31.2	7.0	95.3	TBU	3.99	0.13	TBU	TBU	TBU
	E-3	In	181.4	52.8	516.2	TBU	13.45	0.59	TBU	TBU	TBU
		Out	49.4	26.7	263.5	TBU	7.16	0.34	TBU	TBU	TBU

Contact Information

Steve Trinkaus, PE Trinkaus Engineering, LLC 114 Hunters Ridge Road Southbury, CT 06488 203-264-4558 (phone & fax) Email: <u>strinkaus@earthlink.net</u> Website: http://www.trinkausengineering.com

TRIECA 2018 CONFERENCE

Thank you to all of our 2018 gold sponsors:

trieca.com | @TRCA_TRIECA