

Thank you to all of our 2015 sponsors:

Credit Valley

Unearthing better results.

Media Partner

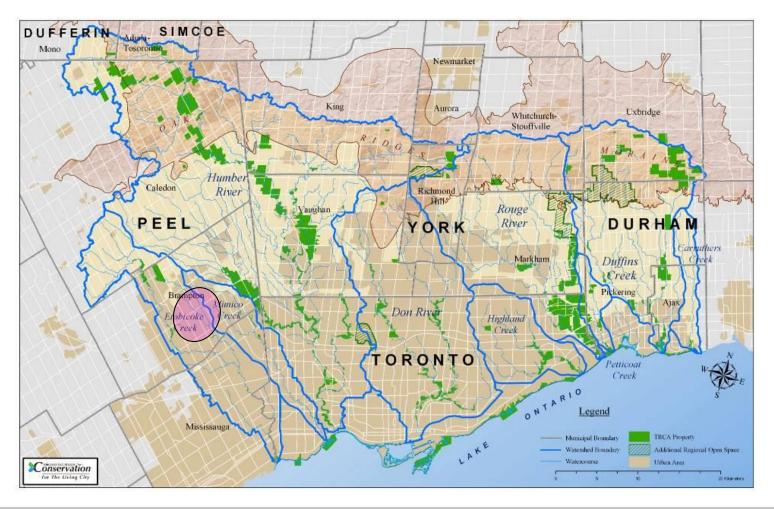
THE COMPLETE WATER MAGAZINE

Channel Naturalization: Planning and Implementation in Peel Region

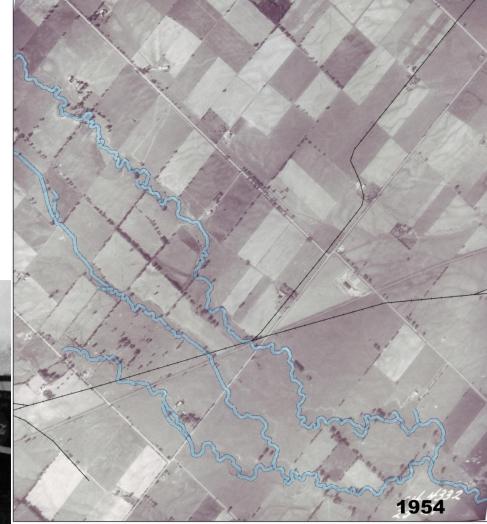
TRIECA March 25 & 26, 2015

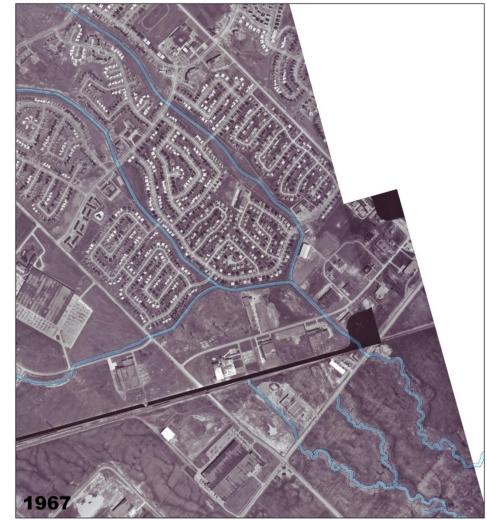
Peel Region Channel Remediation Strategy – An Urban Context

- Climate Change
- Aging Infrastructure
- Natural Channel Design Principles
- Adaptive Management
- Collaboration
- Natural Heritage System Resilience
- Ecosystem Services
- Co-Benefits for SWM



2012 - 2013




- Rural landscape
- Natural watercourse
- Pre- Brampton
 Flood

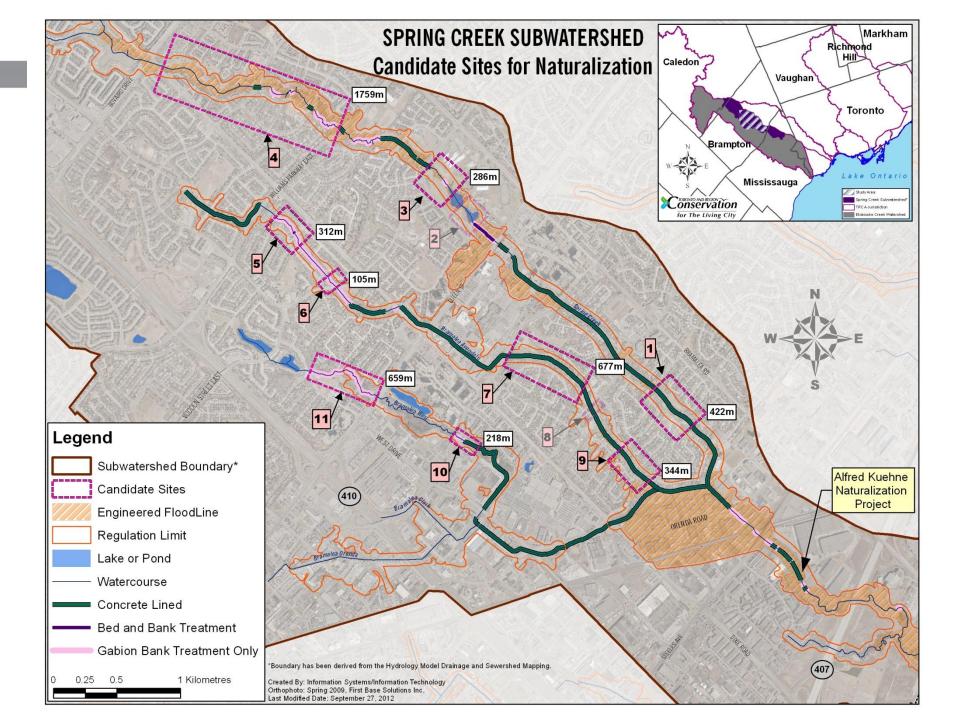
- Rapid
 Urbanization
- Stream channel realignment
- Straightened for conveyance
- Hardened
 - Concrete lined
 - Gabion bed and bank

Member of Conservation Ontario

- Project Team:
 - TRCA and City of Brampton Technical Staff
- Steering Committee:
 - Region of Peel
 - City of Brampton
 - City of Mississauga
 - TRCA
 - CVC
 - Town of Caledon (expressed interest)
 - Etobicoke-Mimico Coalition
- Stakeholders:
 - GTAA, PPG, Public Utilities, MNR, DFO (not all engaged)

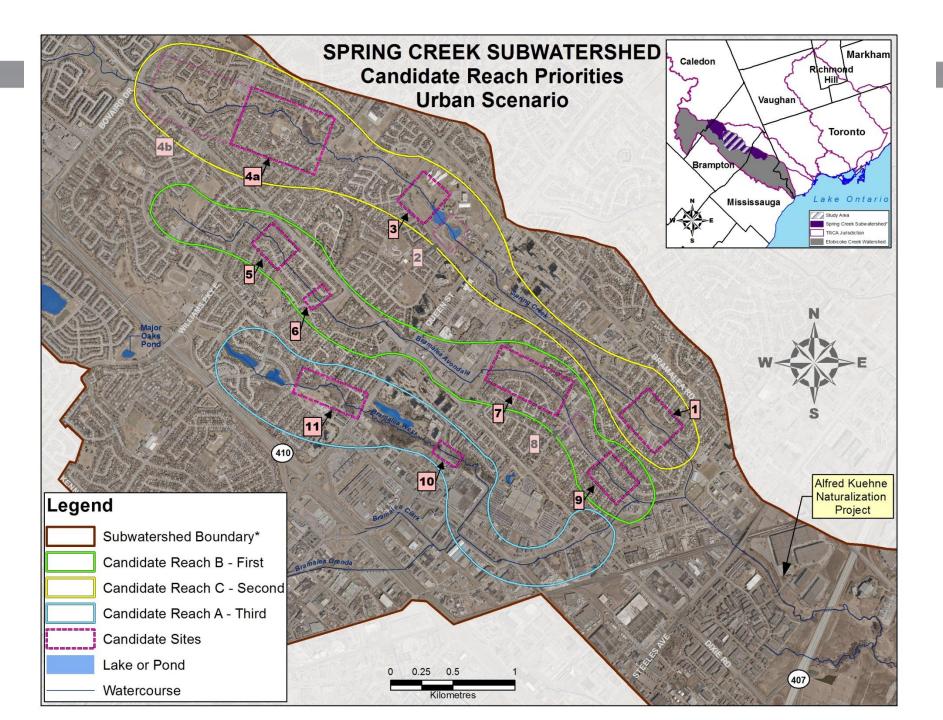
- Flood Risk Modelling
- Categories of Interest
 - Stakeholder Input
- Metrics, Analysis, Ranking
 - Stakeholder Input
- Scenarios & Weighted Sum Matrix
 - Stakeholder Input

Naturalizing the concrete channels will:


Create deeper, longer stream reaches and this slows the velocity of water within the channel.

Δ Local water level

Δ Peak flow timing downstream



Category of Interest	Metric (Ranked)		
1. In-stream Ecology	Fish PassageNatural SubstrateESA species		
2. Habitat Connectivity	Subwatershed ScaleRegional Scale		
3. Forest Health	 Plantable Space Coverage of Ash and Invasive Trees Level of Natural Regeneration ESA species 		
4. Restoration Opportunity Planning	TRCA program priorities		
5. Infrastructure at Risk	Channel ConditionType of InfrastructureLocation		
6. Flexibility of Design	Water Level IncreaseImpact on Adjacent Lands		
7. Public Use URBAN SCENARIO	 Safety Park Experience Education & Outreach Potential 		
8. Project Coordination with Municipalities	Water/WastewaterTransportation		

- 9 Candidate Sites
- 3 Prioritized Reaches for Spring Creek
- 1 Stakeholder
 Engagement Video
- Interim Report for Spring Creek

- **Cost-Benefit Study –** 2014 Winter 2015
- New 2D Modelling 2014 Spring 2015
- Fluvial Geomorphic Assessment Complete Spring 2014
 - All of Spring Creek
 - Informing opportunities between sites
 - Site expansion?

• Master Plan Environmental Assessment – 2014 - 2015

- Municipal EA Process
- Preferred Alternative (includes "Do Nothing")
- Design concepts for narrow, urban stream corridors
- Public Consultation (Maybe quite extensive)

• Naturalization Planning for the rest of Peel Region – 2015 - 2016

From THIS

To THIS

Member of Conservation Ontario

ALFRED KUEHNE STREAM RESTORATION PROJECT

ALFRED KUEHNE STREAM RESTORATION PROJECT

PRE EXSITING CONDITIONS

Within the restoration area natural channel processes were heavily impacted

The entire channel was lined with 500m of concrete

No low flow or velocity refugia

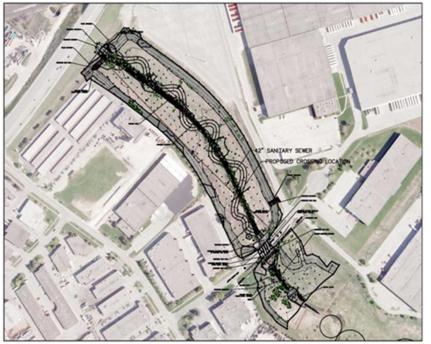
ALFRED KUEHNE STREAM RESTORATION PROJECT

Member of Conservation Ontario

ALFRED KUEHNE STREAM RESTORATION PROJECT

PLANNING

A natural corridor design to restore natural channel form and function.


Must address potential flooding and erosion objectives within exciting floodplain footprint while improving habitat for fish and wildlife

Holistic approach – considered geomorphology, hydrology and biology

Final design to provide the same level of flood and erosion control through geomorphic principles and bioengineering

Provide variability to topography and vegetation on the floodplain to improve terrestrial and aquatic habitat

Enhance water and sediment retention through the use of wetlands

ALFRED KUEHNE STREAM RESTORATION PROJECT

ALFRED KUEHNE STREAM RESTORATION PROJECT

LESSIONS LEARNED – Modular Construction

- Allows localized repair work if required
- Appropriate to localized stream conditions
- Hard treatment, natural substrate
- Field fit components

ALFRED KUEHNE STREAM RESTORATION PROJECT

- Softer Treatment
- Natural Substrate

- Habitat Structures
- Needed to Maintain Stability

ALFRED KUEHNE STREAM RESTORATION PROJECT

LESSIONS LEARNED – Constructing on Shale

- Challenging construction on shale
- Must be properly keyed in
- Angular stone used
 for securement

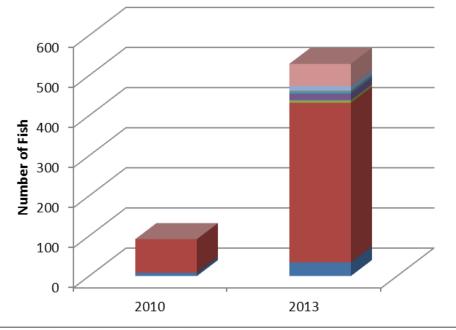
ALFRED KUEHNE STREAM RESTORATION PROJECT

LESSIONS LEARNED – Bypass Channels

Science Based Monitoring Program

ALFRED KUEHNE STREAM RESTORATION PROJECT

Following TRCA Procedures For Evaluating the Effectiveness of Natural Channel Design Projects Using A Science Based Monitoring and Reporting Program


- Ontario Stream Assessment Protocol (OSAP)
 - standardized methodologies for identifying sites, evaluating benthic macro-invertebrates, fish communities, water quality and physical habitats
- Long profile and substrate characterizations at cross-section locations
 - Terrestrial Natural Heritage Inventory
 - Vegetation communities
 - Wildlife

ALFRED KUEHNE STREAM RESTORATION PROJECT

FISHERIES RESULTS

Fish Captured

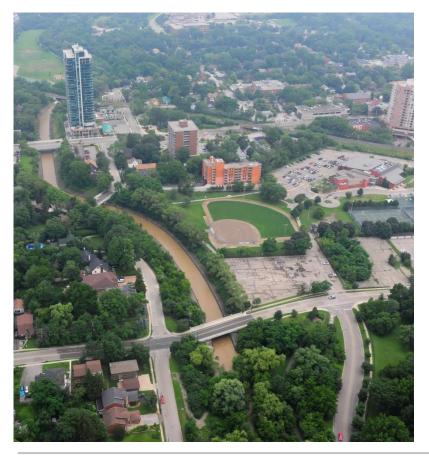
	2010	2013
Blacknose Dace	8	34
Longnose Dace	84	398
White Sucker	0	6
Bluntnose Minnow	0	17
Fathead Minnow	0	6
Creek Chub	0	1
Central Stoneroller	0	12
Green Sunfish	0	55
TOTAL	92	529
	Longnose Dace White Sucker Bluntnose Minnow Fathead Minnow Creek Chub Central Stoneroller Green Sunfish	Blacknose Dace8Longnose Dace84White Sucker0Bluntnose Minnow0Fathead Minnow0Creek Chub0Central Stoneroller0Green Sunfish0

Member of Conservation Ontario

Now have a proof of concept

Provides an alternative maintenance treatment to address the issue of failing concrete channels

~500 m concrete channel decommissioned


9 floodplain wetlands

Native Tree and Shrub Plantings

FUTURE CHALLENGES

Thank You Rick Portiss, rportiss@trca.on.ca Christine Tu, ctu@trca.on.ca ctu@trca.on.ca

Photo Credit: PAMA Spring Creek pre-1930 Region of Peel Working for you

Credit Valley Conservation

