TRIECA 2016 CONFERENCE

Thank you to all of our 2016 sponsors:

Development of a National ASCE Standard for Permeable Interlocking Concrete Pavement

David Hein, P. Eng. Vice-President, Transportation Applied Research Associates, Inc.

Glenn Herold, P. Eng. Director – Commercial Solutions Oaks by Brampton Brick Spring 2014: Permeable Pavements Recommended Design Guidelines ASCE EWRI Committee Report – online only

- Fact sheets
- Checklists
- Design information
- Maintenance
- Standards, guide specs & modeling methods
- Research needs

Establishes common terms for all permeable pavements

ASCE PICP Standard Guidelines

Ssoftware

A Reference

BPM Basics

Content Section 1 – General Scope Section 2 – Preliminary Assessment Section 3 – Design (structural & hydraulic desig additional considerations) Section 4 – Construction Section 5 – Maintenance

Goal: end of 2016 completion

Uses

Adoption by State, Provincial & Local agencies Design professional & contractor guidance

Permeable Interlocking Concrete Pavement (PICP)

Pavers, bedding & jointing stones

Base reservoir Stone – 100 mm. thick

Subbase stone thickness varies with water storage & traffic

Permeable Pavement Functions

Assessing Suitability (S 2.1)

Considerations	Description
Cost efficiency (including life cycle costs)	Capital cost assessment needs to consider cost of pavement,
	drainage infrastructure, stormwater quality management, and land
	use. Overall long-term life-cycle costs can be very competitive if
	stormwater quality and quantity benefits are taken into account.
Environmental approval process	Verify permeable pavements are permitted, or if additional
	environmental approvals are required.
Stringent receiving water quality standards	The presence of protected watersheds, cold water streams,
	marshland, etc. may preclude the use of permeable pavement
	systems, or require more extensive water quality treatment.
Safety	Pavements are able to accommodate safety features such as traffic
	calming (rumble strips), and colored units for identification. Reduced
	ice formation and slip hazards.
Site grades	For grades of more than 5 percent, system will be less effective at
	promoting infiltration and have reduced water storage capabilities.
Depth of water table	Permeable pavements that include an infiltration component should
	not be used in areas where the water table is within 0.6 m (2ft) of
	the top of the soil subgrade.
Winter maintenance, winter sanding	Procedures for snow and ice removal are similar to those for
	conventional pavements. De-icing salt usage can be reduced, use of
	courser sand for traction control recommended. PICP are proven to
	perform even during below freezing conditions.
Risk of accidental chemical spill	PICP may assist in containment of accidental spills (requires the use
	of a geomembrane liner).

Assessing Suitability (cont.)

Considerations	Description
Amount and intensity of precipitation	Supplemental quantity control may be required in areas of frequent,
	high intensity storms.
Complexity of site conditions	The design and construction of permeable shoulders may be
	problematic in areas where retaining walls, utilities, septic systems,
	municipal or private wells are present.
Geotechnical Aspects	Presence of organics, fill soils, swelling clay soils, karst geology, or
	shallow bedrock may pose geotechnical risks that introduce added
	design complexity.
Mandates for water quality control	Permeable pavements may contribute substantially to water quality
	improvement.
Mandates for water quantity control	Permeable pavements provide stormwater management alternatives
	to more costly or complicated practices.
Maintenance protocols	Permeable pavement systems require mandatory non-traditional
	maintenance practices such as vacuum sweeping.
Structural design	Design of PICP for moderate to heavy axle loads or high traffic counts
	may require additional analysis and details.
Interest in innovation	Designs that include PICP can provide opportunity for innovation and
	sustainable benefits.
Owner experience and resources	Permeable pavements should be designed to address owners
	expectations for performance, aesthetics, inspections, maintenance,
	benefits, costs, etc.

- Pedestrian areas, parking lots, low-speed residential roads
- 30 m from wells
- 3 m from building foundations unless waterproofed
- Infiltrating base: Min. 0.6 m to seasonal high water table
 - Max. contributing impervious area: PICP = 5:1
- Surface slope: as much as 18%...w/ subgrade check dams
 - Subgrade slope: >3% use berms

Characterization of soil strength using AASHTO, ASTM, or State DOT lab tests

Resilient Modulus or M_r (PSI or MPa) Measures stiffness (resistance to loads) Dynamic test (repeated loads) on a soil or base sample under simulated confining stresses (from field tests)

California Bearing Ratio (CBR in percent)

Tests vertical bearing capacity compared to a high-quality compacted aggregate base

Resistance or R-value (dimensionless number) Tests vertical bearing <u>and</u> horizontal shear Used in California & a few other states

Strengths correlate to each other

Resilient Modulus, M_r AASHTO T-307 CBR ASTM D1883 R-value ASTM D2844

> AASHTO Soil Classification AASHTO M-45

> > Unified Soil Classification ASTM D2487

Equivalent Single Axle Loads or 18,000 lb ESALs Characterizes performance (rutting)

What is an ESAL?

Traffic Loading and Design

Pavement Class	Description	Design ESALs	Design TI
Arterial	Through traffic with access to high-density, regional, commercial and office developments or downtown streets. General traffic mix.	9,000,000	11.5
Major Collector	Traffic with access to low-density, local, commercial and office development or high density, residential sub-divisions. General traffic mix	3,000,000	10
Minor Collector	Through traffic with access to low-density, neighborhood, commercial development or low-density, residential sub-divisions. General traffic mix.	1,000,000	9
Bus Terminal	Public Transport Centralized facility for buses to pick up passengers from other modes of transport, or for parking of city or school buses.	500,000	8.5
Local Commercial	Commercial and limited through traffic with access to commercial premises and multi-family and single-family residential roads. Used by private automobiles, service vehicles and heavy delivery trucks	330,000	8
Residential	No through traffic with access to multi-family and single-family residential properties. Used by private automobiles, service vehicles and light delivery trucks, including limited construction traffic.	110,000	7
Facility Parking	Open parking areas for private automobiles at large facilities with access for emergency vehicles and occasional use by service vehicles or heavy delivery trucks.	90,000	7
Commercial Parking	Restricted parking and drop-off areas associated with business premises, mostly used by private automobiles and occasional light delivery trucks. No construction traffic over finished surface.	30,000	6
Commercial Plaza	Predominantly pedestrian traffic, but with access for occasional heavy maintenance and emergency vehicles. No construction traffic over finished surface.	10,000	5

Need: Validated Base Thickness Charts

Design Tables for PICP Accelerated Pavement Testing UC Pavement Research Center Sponsors: CA Paver Manufacturers, ICPI Foundation, CA Cement Assoc.

UC Davis Pavement Research Center Tasks

- Prepare accelerated load testing plan based on the results of the mechanistic analysis
- Test responses/failure of three PICP structures in dry and wet condition with a Heavy Vehicle Simulator (HVS)
- Analyze the results revise/update ICPI structural design tables as needed

PICP Test Track Construction

Native Soil Subgrade Moisture

			Surface Rut Depths, mm						
Wheel Load	Load		450 mm	650 mm	950 mm				
(kN)	Repetitions	ESALs	Subbase	Subbase	Subbase				
25	100,000	13,890	8.6	7.7	9.4				
40	100,000	100,000	13.6	12.9	13.7				
60	140,000	768,619	23.7	22.0	20.4				
Total	340,000	882,509							

Saturated Subbase & Soil

	Lood		Surfa	ce Rut Dept	hs, mm
(kN)	Load Repetitions	ESALs	450 mm Subbase	650 mm Subbase	950 mm Subbase
25	100,000	13,890	13.7	11.8	11.2
40	100,000	100,000	25.2	20.8	20.3
60	140,000	768,619	47.2	37.9	34.8
80	40,000	735,167	58.0	46.9	40.8
Total	380,000	1,617,676			

Drained Subbase & Soil

			Surface Rut Depths, mm						
Wheel Load	Load		450 mm	650 mm	950 mm				
(kN)	Repetitions	ESALs	Subbase	Subbase	Subbase				
25	100,000	13,890	9.5	9.1	9.1				
40	25,000	25,000	11.0	10.6	10.6				
Total	140,000	38,890							

07/11/2014

Number of Days in a Year When the Subbase has Standing Water (Wet Days)		0				10				30			
Resilient Modulus of Subgrade	Dry	40	60	80	100	40	60	80	100	40	60	80	100
(MPa)	Wet	24	36	48	60	24	36	48	60	24	36	48	60
Cohesion (kPa).	Dry	10,	15,	20,	25,	10,	15,	20,	25,	10,	15,	20,	25,
	Diy	20	25	30	35	20	25	30	35	20	25	30	35
Internal Friction Angle of Subgrade (°)	Wet	6,	9,	12,	15,	6,	9,	12,	15,	6,	9,	12,	15,
	ince	12	15	22	25	12	15	22	25	12	15	22	25
Lifetime ESALs (Traffic Index)		Minimum Subbase Thickness in mm ASTM #2 for 25 mm Allowable Rut Depth (All designs have 80 mm Paver, 50 mm ASTM #8 Bedding Layer, & 100 mm ASTM #57 Base Layer)											
50,000 (6.3)		150	150	150	150	150	150	150	150	150	150	150	150
100,000 (6.8)		150	150	150	150	210	150	150	150	260	150	150	150
200,000 (7.4)		230	150	150	150	315	210	150	150	365	255	160	150
300,000 (7.8)		290	180	150	150	375	265	170	150	425	315	215	150
400,000 (8.1)		330	220	150	150	420	305	210	150	470	350	255	175
500,000 (8.3)		360	250	160	150	450	335	240	160	500	380	280	205
600,000 (8.5)		385	275	185	150	475	360	260	180	525	405	305	225
700,000 (8.6)		410	295	205	150	495	380	280	200	550	425	325	245
800,000 (8.8)		425	310	220	150	515	395	295	215	565	440	340	260
900,000 (8.9)		440	325	235	155	530	410	310	230	585	455	355	270
1,000,000 (9.0)		455	340	250	165	545	425	325	240	600	470	365	285

Number of Days in a Year When the Subbase has Standing Water (Wet Days)		50				90				120			
Resilient Modulus of Subgrade	Dry	40	60	80	100	40	60	80	100	40	60	80	100
(MPa)	Wet	24	36	48	60	24	36	48	60	24	36	48	60
Cobasian (kPa)	Dura	10,	15,	20,	25,	10,	15,	20,	25,	10,	15,	20,	25,
	Dry	20	25	30	35	20	25	30	35	20	25	30	35
Internal Friction Angle of Subgrade (°)	Wet	6,	9,	12,	15,	6,	9,	12,	15,	6,	9,	12,	15,
		12	15	22	25	12	15	22	25	12	15	22	25
Lifetime ESALs (Traffic Index)		Minimum Subbase Thickness in mm ASTM #2 for 25 mm Allowable Rut Depth (All designs have 80 mm Paver, 50 mm ASTM #8 Bedding Layer, & 100 mm ASTM #57 Base Layer)							oth STM				
50,000 (6.3)		175	150	150	150	210	150	150	150	230	150	150	150
100,000 (6.8)		285	180	150	150	325	215	150	150	340	235	150	150
200,000 (7.4)		395	285	185	150	430	320	215	150	450	335	235	155
300,000 (7.8)		455	340	240	160	495	375	275	195	515	395	290	215
400,000 (8.1)		500	380	280	200	535	415	310	235	555	435	330	250
500,000 (8.3)		530	410	305	230	570	445	340	260	590	465	355	275
600,000 (8.5)		555	435	330	250	595	470	360	280	615	490	380	300
700,000 (8.6)		580	455	350	270	620	490	380	300	640	510	400	315
800,000 (8.8)		600	470	365	285	640	505	395	315	660	525	415	335
900,000 (8.9)		615	485	380	295	655	525	410	330	675	540	430	345
1,000,000 (9.0)		630	500	390	310	670	535	425	340	690	555	440	360

Final Comment – Structural Design

- Traffic Type and Composition Permeable pavements can be used heavy vehicular applications, but a qualified pavement engineer should be consulted for these specific applications.
- Limitations speed limit should be less than 65kph (40 mph)

Hydraulic Design (S3.3)

Determine Hydraulic Goals

- Volume control (maintain predevelopment conditions)
- Water quality (catch first flush)
- Thermal quality
- Peak flow control
- Downstream erosion control
- Infiltration/recharge targets
- Ecosystem/habitat maintenance

Water Balance

Input - Precipitation Data

Intensity (mm/hour)

Percentile **Storm Data**

Figure 1b-Total Average Annual Occurences vs Daily Precipitation (based on 1991 Toronto Rainfall Data from 16 Rain Gauge Stations)

Output – Subgrade Infiltration

- Double ring infiltrometer test
- Use avg. infiltration rate
- Apply safety factor for clogging & construction compaction

Output – Subgrade Infiltration

WHAT IS ENOUGH?

TEXTURE CLASS	MINIMU FILTRATI RATE (f	M ON D OUR	HYDR SOIL G	OLOGIC ROUPING
Sand	8.27	5,25	51 mm/d	А
Loamy Sand	2.41	1,46	9 mm/d	Α
Sandy Loam	1.02	621	mm/d	В
Loam	0.52	317	mm/d	В
Silt Loam	0.27	165	mm/d	С
Sandy Clay Loam	0.17	104	mm/d	С
Clay Loam	0.09	55	mm/d	D
Silty Clay Loam	0.06	37	mm/d	D
Sandy Clay	0.05	31	mm/d	D
Silty Clay	0.04	24	mm/d	D
Clay	0.02	12	mm/d	D

Source: Virginia Stormwater Management Program Manual

Selecting the PICP System Type

No-infiltration Design

 $V_{W} = P(A_{P}) + R(A_{C}) - Q_{U}T_{S}$

Pipe flow can be calculated using the orifice equation

Full-infiltration Design

$V_{W} = P(A_{P}) + R(A_{C}) - I(T_{S})A_{I}$

If Vw > 0, then make sure the subgrade is not saturated for too long (T_D) using:

$$T_D \geq \frac{V_W}{A_I * I}$$

Partial-infiltration Design

 $V_{W} = P(A_{P}) + R(A_{C})$ $- I(T_{S})A_{I} - Q_{U}T_{S}Z$

Infiltration Storage volume dictates pipe location (elevation).

Underdrain elevation factor (Z) used to adjust for duration of pipe flow

• Outlet structures provide for future modifications to the storage depth, and provide a convenient monitoring location.

• Sites with subgrade slopes over 3% often require buffers, weirs, check dams, etc. to control water flow

Roof water can be discharged onto, or into, the pavement.

• Impermeable liners can be used adjacent to buildings.

• Separation is required between permeable and traditional base materials.

 Use anti-seep collars along utility trenches that bisect the PICP pavement area to prevent lateral migration of water.

Pre-Construction Meeting (S4.2)

- PICP construction sequence
- Erosion & sediment control plan
- Subgrade protection
- Material storage
- Paver stitching
- Inspection criteria
- Contractor
 certification

Erosion and Sediment Control (S4.3)

Construction Inspection Checklist (S4.4)

Minimizing compaction

tion is not in-

Construction Inspection Checklist

Place geomembranes and geotextiles as specified

Construction Inspection Checklist

Underdrain placement

Construction Inspection Checklist

Aggregate placement, compaction and testing

Mechanical PICP Installation

Maintenance Guidelines (S5)

• **Contaminant Loading** – Minimize/remove potential contaminants such as winter sand, biomass (tree leaves and needles, grass clippings, etc.) and sediment

Maintenance Guidelines

 Infiltration Testing – Test surface infiltration rate using ASTM C1781

Routine and Remedial Maintenance

- Regenerative air vacuum sweeper
 - Routine cleaning
 - Removes loose sediment,
 - leaves, etc.
 - More common
 - ~\$1000/acre
- True vacuum sweeper
 - 2X more powerful
 - Restores highly clogged surfaces
 - Narrower suction

Winter Maintenance

- Snow melts– lower risk of ice
- Does not heave when frozen
- Use normal plows dirty snow piles clog surface
- Deicing salts okay
- Sand will clog system use jointing material for traction

Status of ASCE Standard Guideline

- Final Standard Development Meeting to be held in Houston in June 2016
- Full Standard will undergo editing before going to public comment for 45 days in the summer of 2016
 - Intent to publish the standard by the end of 2016

Projections for Euro 2016?

