TRIECA 2016 CONFERENCE

Thank you to all of our 2016 sponsors:

Erosion Risk Evaluation Tool for Prioritizing Infrastructure Encroachment Sites for Protection along Meandering Streams

Robin McKillop Brian Greck Matt Johnston

PALMER ENVIRONMENTAL CONSULTING GROUP INC.

Outline

• The Problem

 Channel encroachment along sewer infrastructure

• The Assessment

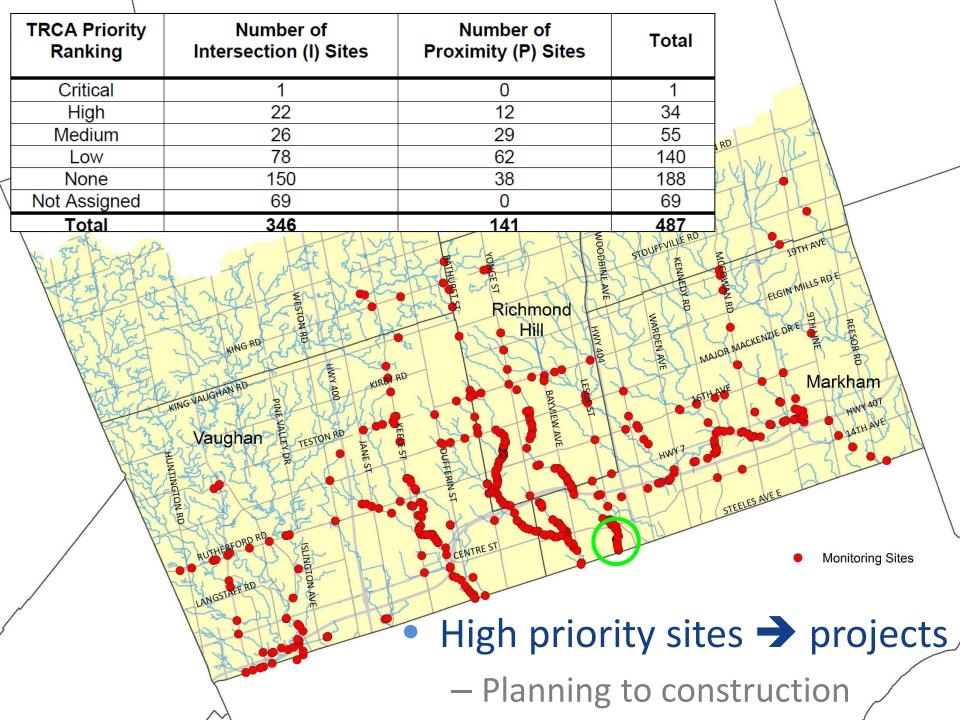
Evaluation of risk due to lateral and vertical erosion

The Mitigation

 Conceptual strategies for mitigation at highest priority sites

THE PROBLEM Channel encroachment along sewer infrastructure

Infrastructure Hazard Monitoring Program (IHMP)


- Collaborative partnership since 2011
 - Long-term management of regional infrastructure assets subject to erosion hazards

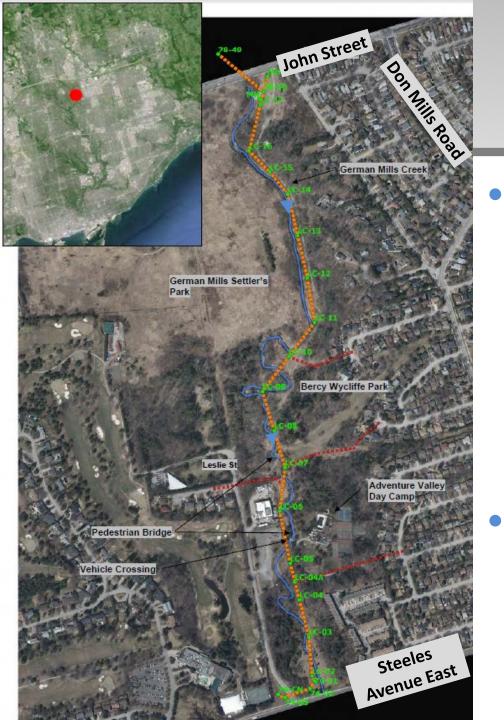
Monitoring 487+ sites

- Priorities assigned based on risk to infrastructure

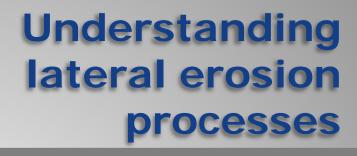
Integrated Infrastructure Protection Works Program (IIPWP)

Extension of IHMP

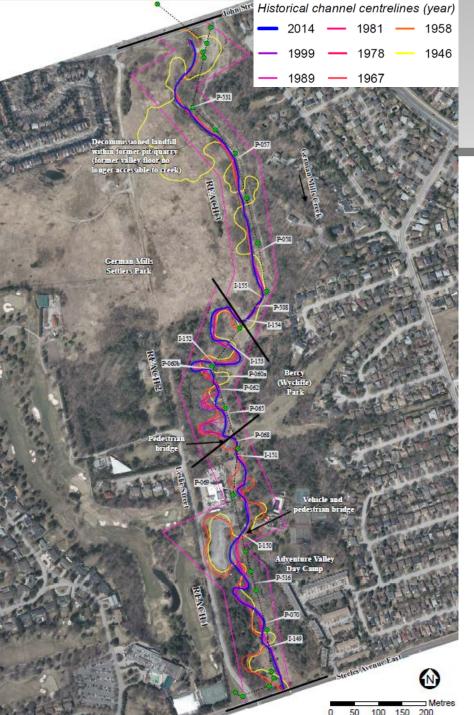
- Allows for the detailed planning, design and implementation of regional infrastructure protection works
- Projects prioritized based on information collected by monitoring staff

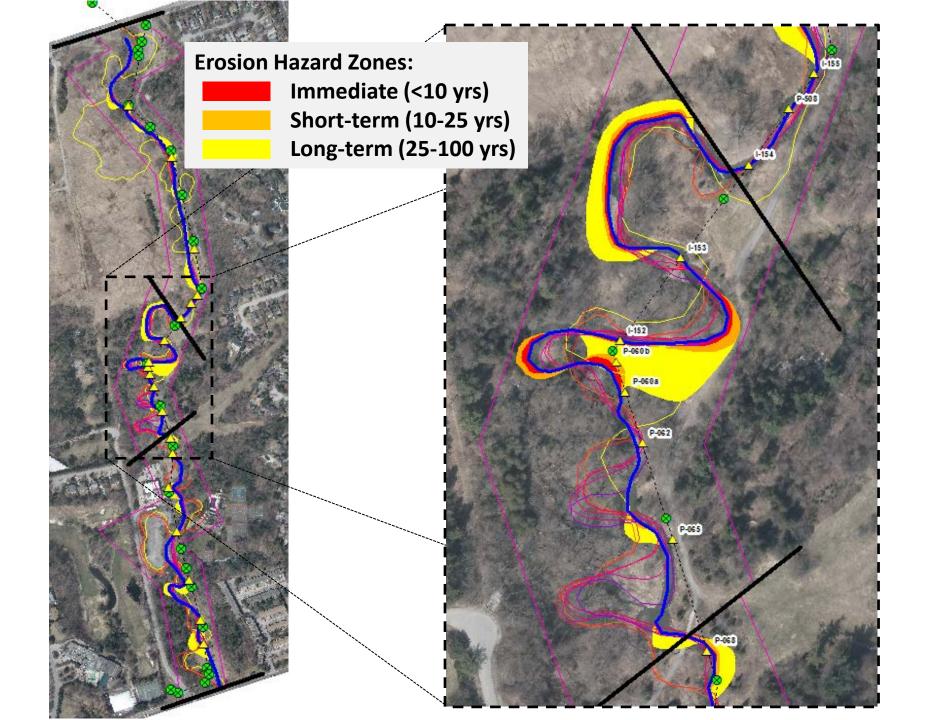

Bercy Park – Sanitary Sewer Protection Project

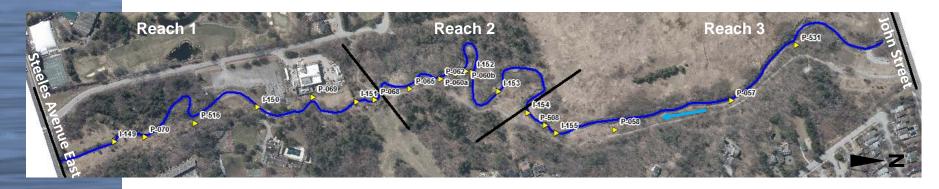
- 6 of the 10 highest priority sites within the IHMP located along German Mills Creek, in Markham
 - TRCA and York Region agreed concentration of at-risk sites warranted reach-based assessment

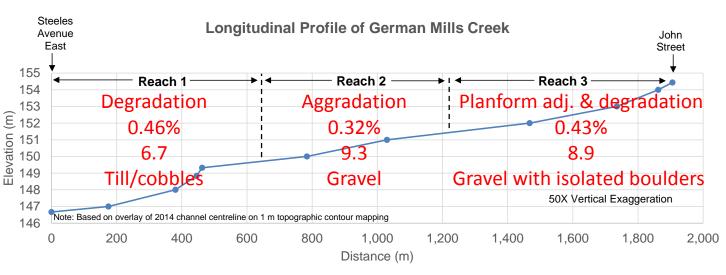


Study area


- Sanitary sewer
 infrastructure along
 German Mills Creek
 valley
 - Encroachments
 - Crossings
 - Manholes
- Recreational trail & pedestrian bridges




- Historical channel realignment (straightening)
- Watershed urbanization
- Meander adjustment
 - Progressive migration down-valley
 - Cut-off



Understanding vertical erosion processes

Mode of adjustment: Gradient: W/D ratio: Bed material:

Scale of evaluation

- Site-specific evaluation approach needed
- Lateral timeframe estimates based on air photo analysis unrepresentative of recent acceleration in bank failure
 - Used as independent check to corroborate sitespecific evaluation results
- Vertical reach-scale trends not necessarily representative of site-specific processes

THE ASSESSMENT Evaluation of risk due to lateral and vertical erosion

Evaluation approach

• Objectives

- Systematic
- Comparable
- Transparent
- Flexible
- Insight from...
 - Cooksville Creek Rehabilitation Study and Markham Erosion Restoration Implementation Plan (Aquafor Beech Limited, 2011)

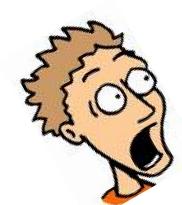
Lateral erosion risk (LER) parameters

Category	Parameter	Low (1)	Moderate (2)	High (3)	Weight
BANK DISTANCE	Distance from Top-of-Bank (DB)	>5 m	2 – 5 m	<2 m	0.150
BANK STRESS	Planform Position (PL)	Inner bank of meander	Straight	Outer bank of meander	0.150
	Thalweg Position (TH)	Inside	Centre/flat	Outside	0.100
	Radius of Curvature (RC)	>50 m	10 – 50 m	<10 m	0.100
BANK ERODIBILITY	Grain Size (GS)	Silt/sand dominated	Sand/gravel dominated	Cobble or till dominated	0.075
	Stratigraphy (ST)	No	-	Yes	0.050
	Bank Angle (BA)	<45°	45 - 55°	>55°	0.075
	Vegetative Cover (VC)	Low (<30% of area)	Medium (30-70% of area)	High (>70% of area)	0.200
	Bank Height-to- Bankfull Depth (HD)	<1.6	1.6 – 2.5	>2.5	0.100

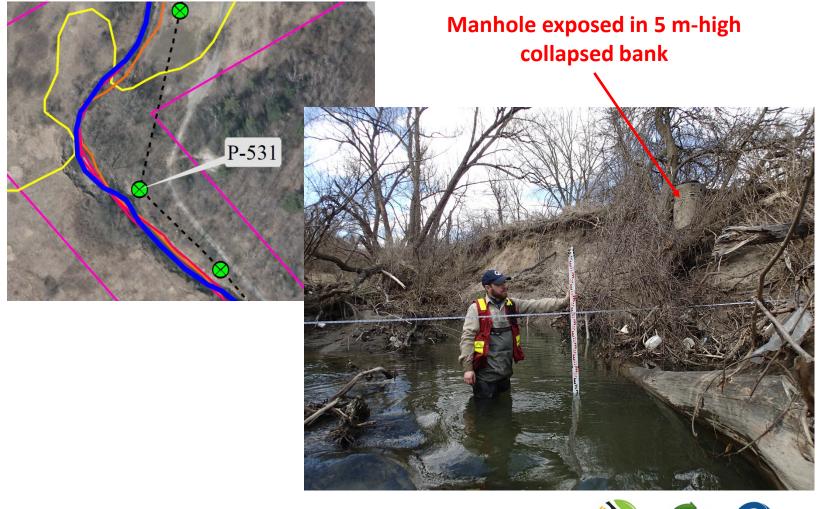
Vertical erosion risk (VER) parameters

Category	Parameter	Low (1)	Moderate (2)	High (3)	Weight
BED ERODIBILITY	Reach-scale Process (RP)	Aggradation	Widening or Planform Adjustment	Degradation	0.200
	Site-scale Process (SP)	Erosion (e.g., scour pool)	Neutral (e.g., shallow pool, low riffle)	Deposition (e.g., bar)	0.500
	Bed Material (BM)	Till, large cobbles or riprap	Small to medium cobbles	Silt, sand and/or gravel	0.300

Depth of cover


- Should be included explicitly; was considered separately
- Conflicting information stemming from channel realignments, old sewer as-built drawings and recent TRCA survey

Parametric equations


Lateral Erosion Risk (LER) Index = $DB^*w_{DB} + PL^*w_{PL} + TH^*w_{TH} + RC^*w_{RC} + GS^*w_{GS} + ST^*w_{ST} + BA^*w_{BA} + VC^*w_{VC} + HD^*w_{HD}$

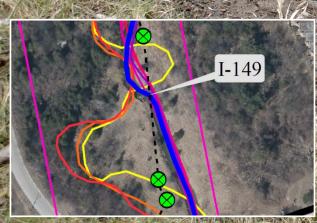
Vertical Erosion Risk (VER) Index = $RP^*w_{RP} + SP^*w_{SP} + BM^*w_{BM}$

Example LER Index calculation: Site P-531

Example LER Index calculation: Site P-531

Parameter	Value	Rank
Distance from Top-of-Bank (DB)	0.2 m	3
Planform Position (PL)	Outer bank of meander	3
Thalweg Position (TH)	Outer	3
Radius of Curvature (RC)	19 m	2
Grain Size (GS)	Silt/sand dominated	3
Stratigraphy (ST)	Yes (fill overlying alluvium)	3
Bank Angle (BA)	60°	3
Vegetative Cover (VC)	Low (<30% of area)	3
Bank Height-to-Bankfull Depth (HD)	3.9	3

LER Index = 3*0.15 + 3*0.15 + 3*0.10 + 2*0.10 + 3*0.075 + 3*0.050 + 3*0.075 + 3*0.20 + 3*0.10 =**2.90**



Example VER Index calculation: Site I-149

Till exposed along bed

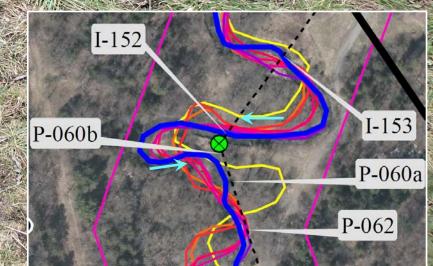
Pinch-point at old rock vein/riprap

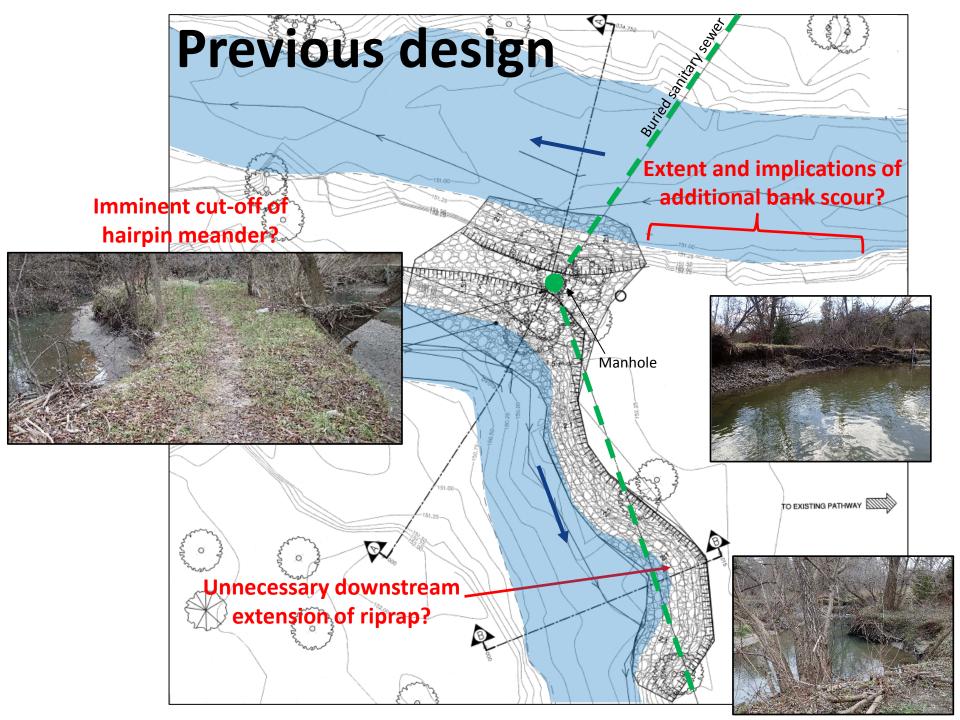
Deep scour pool below knickpoint

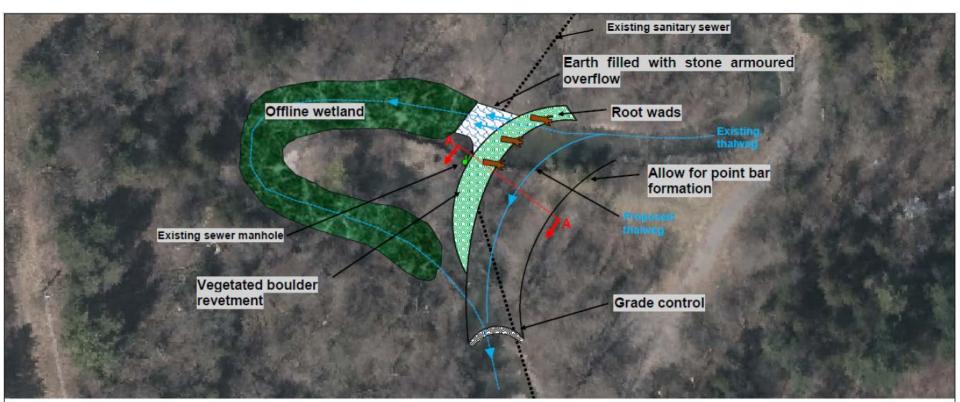
Example VER Index calculation: Site 1-149

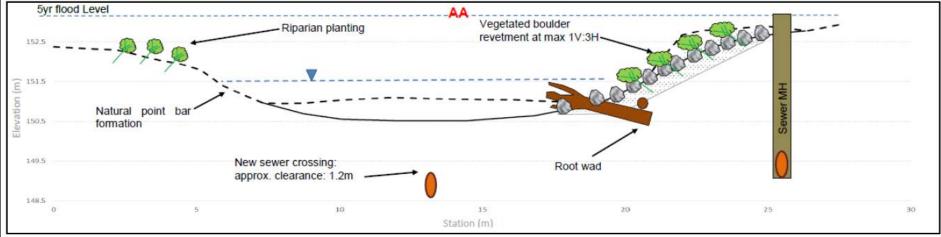
Parameter	Value	Rank
Reach-scale Process (RP)	Degradation	3
Site-scale Process (SP)	Erosion (e.g., scour pool below knickpoint)	3
Bed Material (BM)	Till (clayey)	1

VER Index = 3*0.20 + 3*0.50 + 1*0.30 = **2.40**


Overall Erosion Risk


Site ID	Lateral Erosion Risk (LER) Index	Lateral Erosion Risk (LER) Rank	Vertical Erosion Risk (VER) Index	Vertical Erosion Risk (VER) Rank	Overall Erosion Risk (OER) Rank
P-531	2.9	1	N/A	N/A	1
P-060b	2.5	3	N/A	N/A	2
I-152	2.175	5	1.6	12	3
P-057	2.6	2	N/A	N/A	4
P-068	2	9	3	1	5
I-149	N/A	N/A	2.4	2	6
P-058	2.45	4	N/A	N/A	7
P-070	2.175	6	2.2	6	8
I-155	N/A	N/A	2.3	4	9
I-150	N/A	N/A	2.4	3	10
P-060a	N/A	N/A	1.6	10	11
P-069	1.95	10	N/A	N/A	12
I-154	N/A	N/A	2.3	5	13
P-065	2.15	8	1.8	8	14
P-516	2.15	7	N/A	N/A	15
I-151	N/A	N/A	2.0	7	16
P-062	N/A	N/A	1.6	11	17
P-508	N/A	N/A	1.5	13	18
I-153	N/A	N/A	1.8	9	19


THE MITIGATION Conceptual strategies for mitigation at highest priority sites


Manhole protection at Site I-152 / P-060b

Proactive mitigation alternative

- Concentration of erosion sites with at-risk infrastructure warrants reach-based assessment
- Risk of both lateral erosion and vertical erosion must be considered at a site scale
- Erosion risk evaluation tool through the LER and VER indices – facilitates systematic and transparent prioritization of mitigative measures

Questions?

robin@pecg.ca bgreck@greckassociates.ca mjohnston@trca.on.ca

PALMER ENVIRONMENTAL CONSULTING GROUP INC.