Erosion Control Solutions for Soil Management and Vegetative Establishment

Stephen R. Zwilling Profile Products LLC

Key Erosion Control Objectives

Soil stabilization

Establish sustainable vegetation

• Minimize environmental impact of site development

Holistic Approach to Erosion Control

- Understanding soil profile
- "P" factor
- Site conditions elevations, timing & weather
- Plant selection
- Correct product selection for stabilization and vegetation
- Site maintenance

Establishing vegetation requires balancing

NATURAL VARIABLES

and

PRODUCT BENEFITS

to create the best environment for the plants

Soil Water
Vegetation

Erosion Control Effectiveness

Growth Establishment

"Product Selection Triangle"

Basic Erosion Control Product Terminology

RECP – Rolled Erosion Control Products

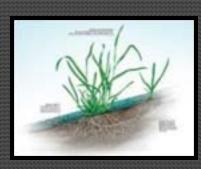
HECP – Hydraulic Erosion Control Products

TRM- Turf Reinforcement Mats

HM – Basic Hydraulic Mulch Products

SMM – Stabilized Mulch Matrix

BFM – Bonded Fiber Matrix

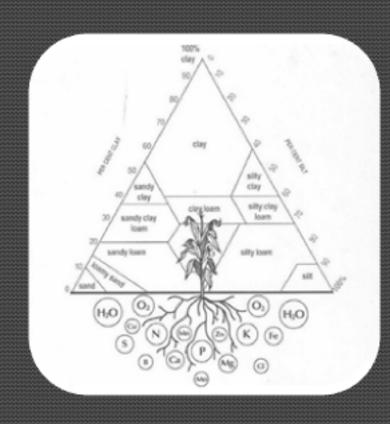

EFM – Engineered Fiber Matrix

FRM – Fiber Reinforced Matrix

ET-FRM – Extended Term Fiber Reinforced Matrix

Agronomic Considerations

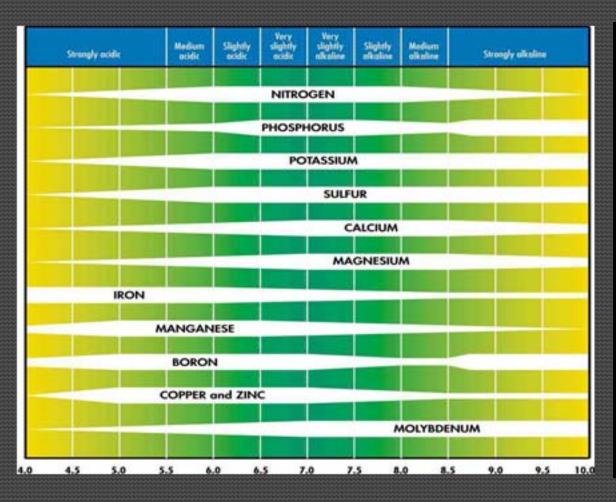
- Vegetation is critical to long-term erosion control
- Enhance germination by providing the plant what it needs <u>during first stages of growth</u>
- Assure long-term plant survivability
- Establishment of healthier vegetation and less nutrient run-off


Soil Analysis

Critical for establishing sustainable vegetation

Soil Test – Key Factors

- Organic Matter
- pH
- Electrical Conductivity
- Total Dissolved Salts
- Sodium Absorption Ratio
- % Organic Acids
- Cation Exchange Capacity (CEC)
- Nitrogen, Phosphate & Potassium (N, P, and K)


Benefits of a Soil Test

- Evaluate soil fertility
 - Measure soil's ability to supply essential elements
- Provide a basis for amendment recommendations
- Help ensure appropriate plant species selection
- Predict probability of desired outcome
 - optimal vegetation growth!

pH

- As pH deviates farther away from neutral, either to the acidic or alkaline side, less nutrients are available for plant uptake
- Calcium, Magnesium, Potassium uptake significantly decreased at less than 5.5 pH
- Aluminum Toxicity negatively impacts root growth Less than 5.0 pH
- Manganese Toxicity plant tissue
- Iron Toxicity- can cause stunted growth

How pH Affects Nutrient Uptake

ACIDITY	NUTRIENT UPTAKE
4.0 pH	10%
4.5 pH	29%
5.0 pH	46%
5.5 pH	67%
6.0 pH	80%
6.3 pH	100%
7.3 pH	100%
0.0 pm	80%
8.5 pH	67%
9.0 pH	46%
9.5 pH	29%
10.0 nH	10%

Grass Species pH Tolerance

	Minimum pH	Maximum pH
Fescue	5.0	8.5
Bentgrass	5.0	7.5
Creeping Bentgrass	5.0	7.5
Bluegrass	5.0	8.4
Bermudagrass	5.0	8.0
Perennial ryegrass	5.2	7.5
St. Augustine	6.5	7.5
Paspalum	6.4	10.5

Relationship between pH and fertilizer utilization

Acidity	Ferti	lizer	wast	ed
			*****	*****

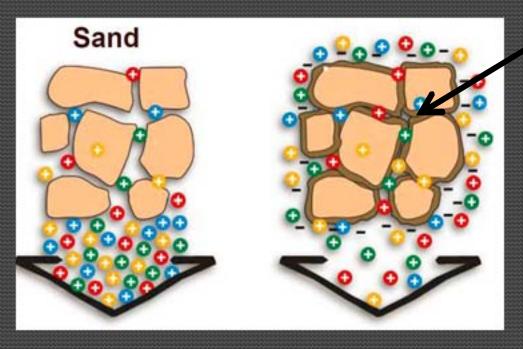
4.5 pH	71%
5.0 pH	54%
5.5 pH	33%
6.0 pH	20%
7.0 pH	0%

Organic Matter

- Soil organic matter is a complex and varied mixture of organic substances
- Soil organic matter, can be divided into two components:
 - The recognizable organic material
 - Humus
- For our purposes soil organic matter is defined as the percent of humus in the soil

Organic Matter

Should be greater than 2%


Can be
chemically
modified
and/or import
top soil

Humic Acid

- Helps break up clay and compacted soils
- Enhances water retention, reducing soil solution evaporation
- Improves root development and penetration through soil
- Improves transfer of macro & micro nutrients
- Stimulates the development of micro-flora populations

Humic substances provide the Cation Exchange Capacity (CEC) that a Sand, Sandy Loam or Loamy Sand may lack.

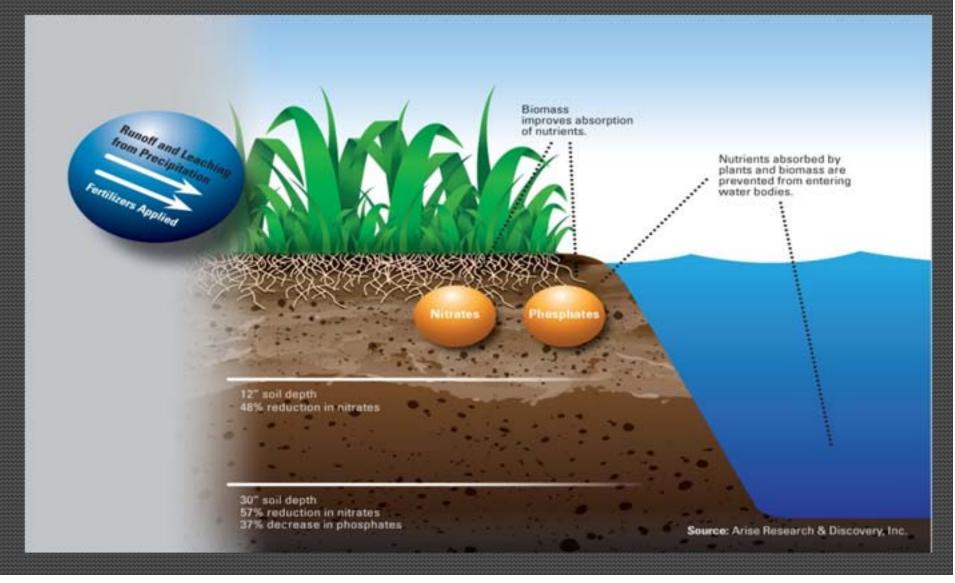
Cationic nutrients held by humus

Poor CEC

Good CEC

Low Humus

High Humus



Fertilizer Alone

Fertilizer plus growth stimulant

Proactive Soil Modification is a BMP

Key Objectives in soil management for site development

- Focus on erosion control measures / backfilling with sediment management BMP's
- Understanding hydraulic flows designing cost effective conveyances stabilizing shorelines and channel flows
- Systems to minimize turbidity in transference critical discharge points
- Stabilizing soils and effective vegetation establishment – understanding soil profile / plant selection

Revised Universal Soil Loss Equation (RUSLE)

 $A = R \times K \times LS \times C \times P$

A = computed soil loss per unit area per unit time for a given storm period and intensity

 $\overline{\mathbf{R}}$ = rainfall factor

K = soil erodibility factor

L = slope length factor

S = steepness factor

C = vegetation or cover factor

P = erosion control practice factor

"C" FACTOR IS CRITICAL FOR EROSION MANAGEMENT

The lower the "C" Factor or (Cover Factor) an erosion control medium has better control of soil loss

High "C" Factor

Low "C" Factor

"P" Factor can significantly impact soil loss

Practice "P"	Factor
Compact and Smooth Loose disked plowed Loose with rough surface 12" depth Raked with Bulldozer across slope Rough surface tracks all directions Tracked up and down slope Loose disked plowed	(1.2) (1.2) (.8) (.9) (.9) (.7) (1)
	(')

What is good and bad about this picture?

Grassing Options

Straw Mulch

Advantages

Low cost seeding practice

Fast way of distributing seed and mulching

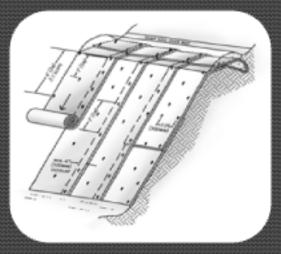
Disadvantages

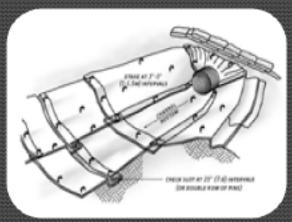
Poor erosion control qualities

Weed seed contamination

Messy and can blow away

Erosion Blankets – Picking the right one is critical





Wide range of choices: strength, longevity and materials

Slope Applications



Channel Applications

Proper installation, staple patters and grading are critical for success

Good soil to blanket contact is critical!

Turf Reinforcement Mats that grow grass can be a great green alternative to traditional rip rap

Hydraulically-Applied Erosion Control Products

- Customized to site specific conditions
- Minimal labor required
- Economical way to control erosion and establish vegetation
- Wide range of performance platforms
- Safe for environment

Varity of Hydraulically Applied Mulch Products

Seeding Mulches

- Cellulose
- Cellulose / tack
- Blend
- Blend with tack
- Pelletized fiber
- Straw fiber
- Wood Fiber
- Wood with Tack

Erosion Control Mulches

- Stabilized Mulch Matrix (SMM)
- Bonded Fiber Matrix (BFM)
- Engineered Fiber Matrix (EFM)
- Fiber Reinforced Matrix (FRM)

NOT ALL PRODUTS PERFORM THE SAME

Two major types of Hydraulic Seeding Machines

Mechanical agitated machines

Have paddles to mix slurry in the tank. Can apply a wide range of fiber mulch materials

Generally smaller machines that mix slurry with jets. They have difficulty pumping paper-based mulch materials

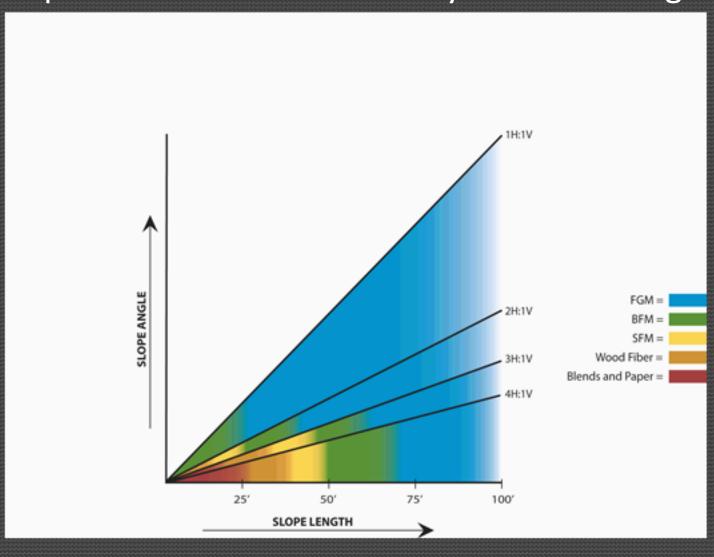
Common Hydroseeding Equipment

Mix HECP's into hydro-seeder, add seed, fertilizer and soil modifiers then shoot from hose or cannon

HECP categories Requirements:

A. The selected HECP shall be 100% biodegradable via ASTM D5338, non-toxic with an LC50 > 100% via EPA 2021.0 and conform to the property values presented in Table 1.

Table 1: HECP Property Values


Type	Minimum Functional Longevity ³ (months)	Slope App. Limit (_H:1V)	Slope Interruption Limit (ft, m)	Minimum Erosion Control Percent Effectiveness (%)	Minimum Vegetation Establishment (%)	Minimum Water Holding Capacity (%)	Minimum Wet Bond Strength (lb/ft, N/m)	Thickness (in, mm)
Test Method	ASTM D5338	UWRL ²	UWRL ²	UWRL ²	ASTM D73221	ASTM D7367	ASTM D68181	ASTM D6525 ¹
HM	1	3	25, 7.6	50	200	1000	0	n/a
SS	2	1	30, 9.1	65	100	1200	3.0, 44	0.03, 0.8
SMM	3	2	50, 15	85	400	1300	4.5, 66	0.1, 2.5
BFM	6	1	75, 22.9	90	600	1400	6.0, 88	0.12, 3.0
FGM-HP	12	0.25	100, 30.5	99	800	1700	9.0, 131	0.22, 5.6
ET-FGM	18	0.25	125, 38.1	99	500	1600	7.5, 110	0.23, 5.7

ASTM test methods developed for Rolled Erosion Control Products and have been modified to accommodate Hydraulically-Applied Erosion Control Products.

Large scale testing conducted at Utah Water Research Laboratory. For specific testing information please contact a Profile technical service representative at 866-325-6262.

Functional Longevity is the estimated time period, based upon ASTM D5338 testing and field observations, that a material can be anticipated to
provide erosion control and agronomic benefits as influenced by composition, as well as site-specific conditions, including; but not limited to –
temperature, moisture, light conditions, soils, biological activity, vegetative establishment and other environmental factors.

Slope Protection Guidelines by Product Category

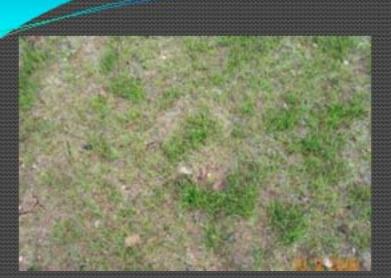
Confirm HECP Performance Base/Criteria for a QPL

Physical Properties*	Test Method	Units	Minimum Value	
Mass/Unit Area	ASTM D6566 ¹	g/m² (oz/yd²)	407 (12)	
Thickness	ASTM D6525 ¹	mm (in)	5.6 (0.22)	
Wet Bond Strength	ASTM D6818 ¹	N/m (lb/ft)	131 (9)	
Ground Cover	ASTM D6567 ¹	%	99	
Water Holding Capacity	ASTM D7367	%	1700	
Material Color	Observed	n/a	Green	
Performance Properties*	Test Method	Units	Value	
Cover Factor ²	Large Scale⁴	n/a	< 0.01	
Percent Effectiveness ³	Large Scale⁴	%	> 99	
Cure Time	Observed	hours	0 - 2	
Vegetation Establishment	ASTM D7322 ¹	%	800	
Environmental Properties*	Test Method	Units	Typical Value	
Functional Longevity ⁵	ASTM D5338	n/a	Up to 18 months	
Ecotoxicity	EPA 2021.0	%	96-hr LC50 > 100%	
Effluent Turbidity	Large Scale⁴	NTU	< 100	
Biodegradability	ASTM D5338	%	100	

Drilling down even more for better specifications

Third Party Testing Labs

- 6 ft x 30 ft test beds / Adjustable slopes
 - 2H:1V & 3H:1V
- Sand & clay soils
- Test both RECPs & HECPs

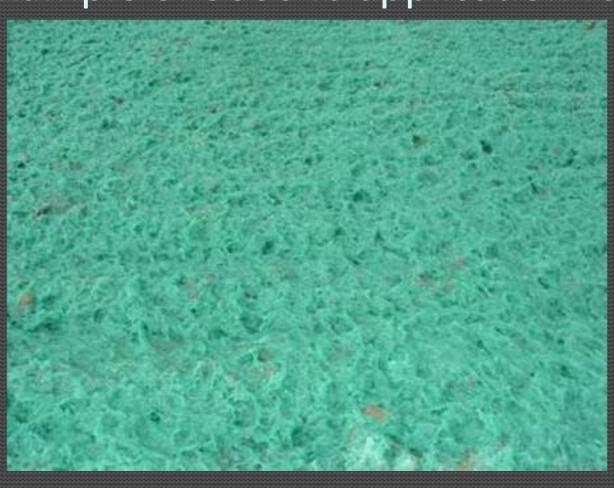


Third party testing can help verify product performance to help create performance driven specifications

Note effects from rainfall impact

Test Plot 1 After 18 Days (1,500 lbs. mulch)

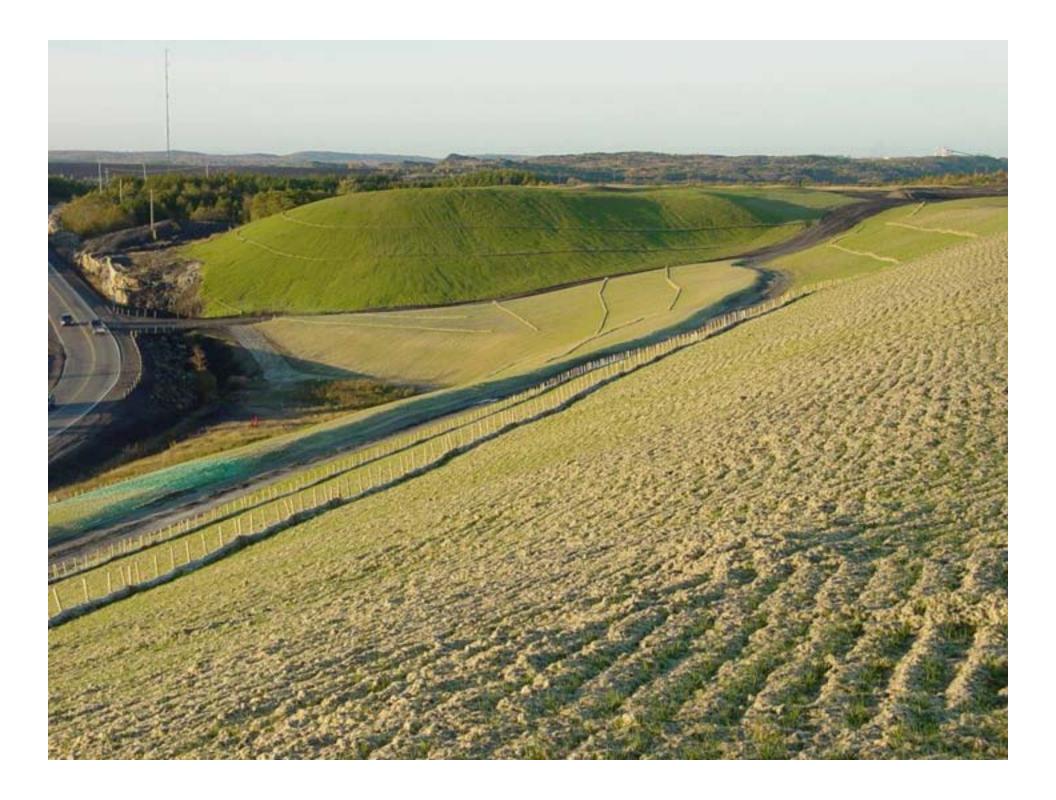
Test Plot 2 After 18 Days (2,250 lbs. mulch)


Mulch Rate Makes a Big Difference in Results

Test Plot 3 After 18 Days (3,000 lbs. mulch)

HECP's are a very small part of the over-all project cost

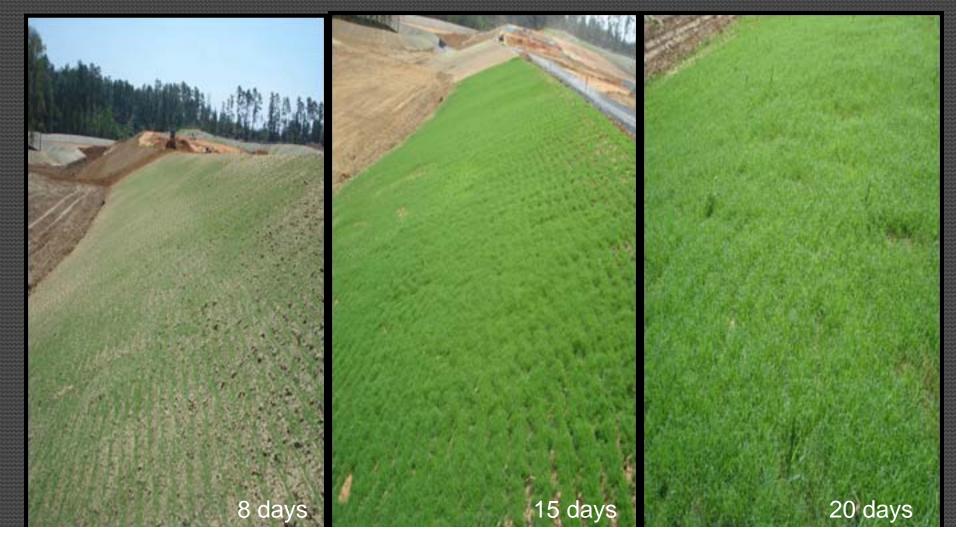
Example of 3000 lb application rate



Bad specifications
Wrong seed mixes
Unfavorable soils
Poor applications

lead to disappointing and costly results!

More examples of poor planning and execution



Side by side testing of products can really show you what works best

Right grass, right hydraulic erosion control product and right soil preparation

Construction activity and nature can live in harmony with a little planning

QUESTIONS For more information

stevez@profileproducts.com (704) 840-6770

www.profileproducts.com

www.profileps3.com

Cathy Wall – Quality Seeds 877 856-7333