TRIECA Mississauga, Ontario

Implementing LID Techniques March 27 and 28, 2012

Scott E. Sonnenberg, PE, LA, CPESC, CPSWQ Eco-Design & Engineering, Ltd Plain City, Ohio

Outline

- Three Driving Forces
- Scott's Version of LID Objectives
- Obstacles to LID
- Regulatory Criteria
- Project Examples
- Comments

Three Driving Forces

- Meeting Regulatory or PR Goals
- Owner Developer Goals
- Designer Priorities

Low Impact Design

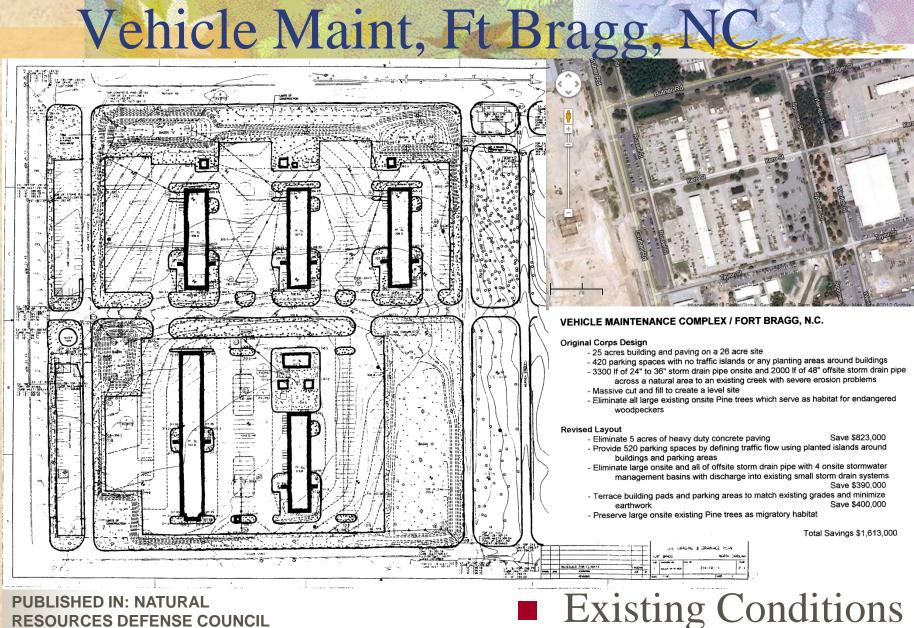
- Minimize Impervious Impacts
- Maximize Flow Lengths
- Minimize Flow Velocities
- Maximize Infiltration
- Provide Water Quality Filtration
- Provide Controlled Flood Storage

Obstacles

- Cost Owners
- Typical Design Solutions Designers
- Regulatory Standards Agencies
- Zoning Criteria Local Gov't
- Construction Standard Practices -Contractors

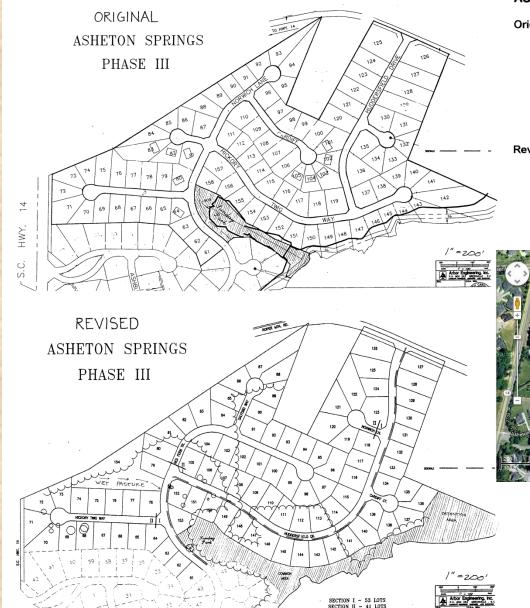
Stormwater Regulations

- Post < Pre Runoff Rate</p>
- Flood Control
- Critical Storm 1-Yr Volume Increase
- NPDES Phase II Regulations
- Water Quality Criteria
- Infiltration/Volume Criteria


Citizen Park, Aiken, SC

Flood Control RegsPublic Relations

Flood Control RegsPublic Relations



Costs

RESOURCES DEFENSE COUNCIL

"STORMWATER STRATEGIES IN THE SOUTHEAST", 1998

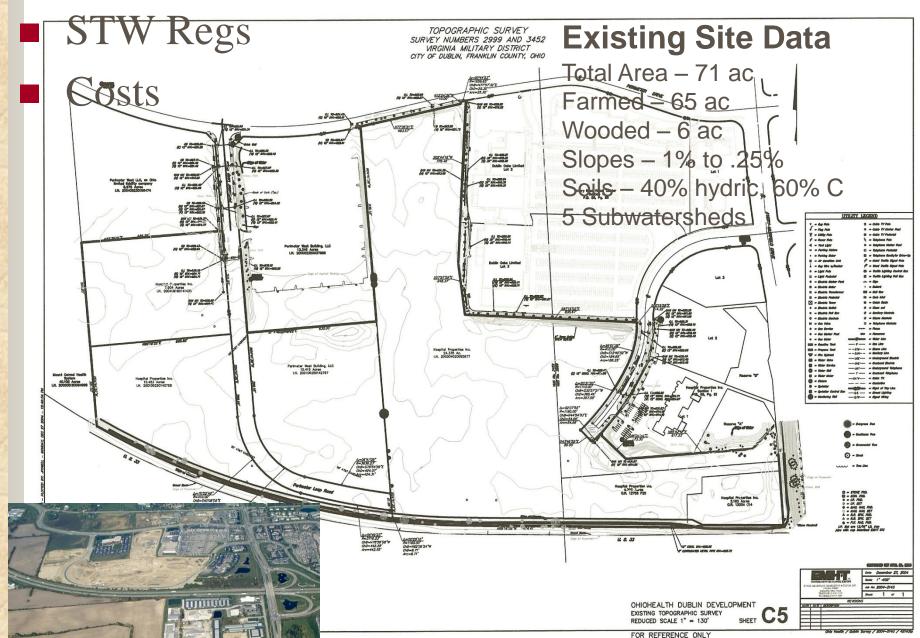
Asheton Springs, Mauldin, SC

ASHETON SPRINGS - PHASE III

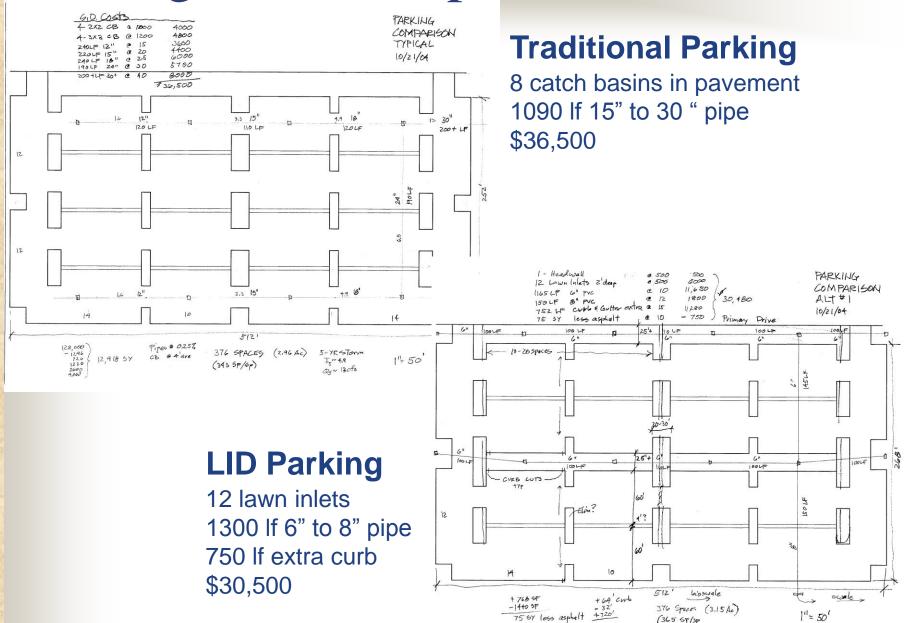
Original Design

- 97 lots

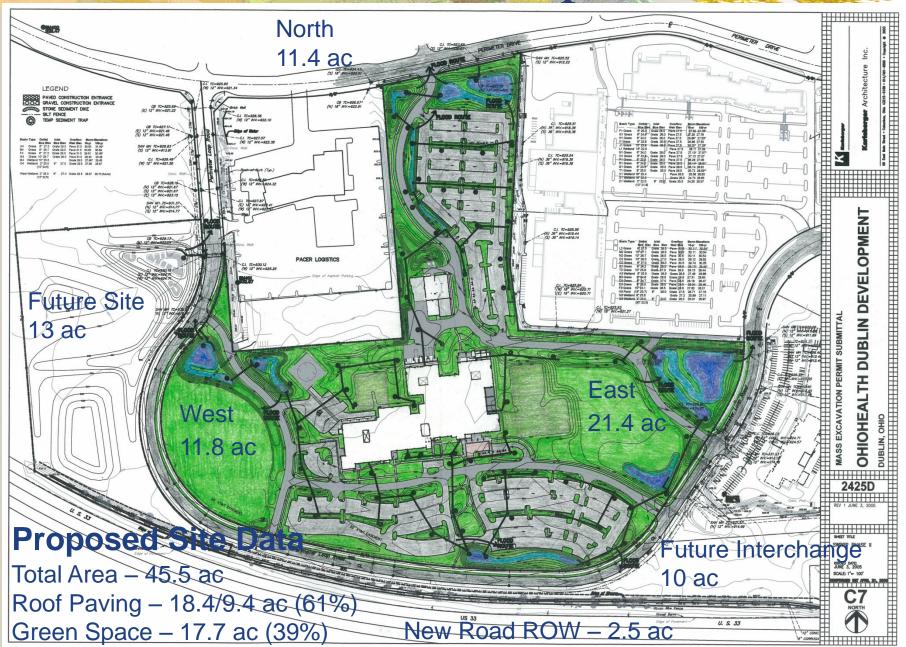
- 7 environmentally unbuildable
- 9 too small for desired house plans
- 4 with wetland, floodplain or detention areas on lot
- 77 good buildable lots
- 6400 If of road
- \$7300+/lot approximate construction costs \$704,000 approximate total
- \$146,000+ possible losses due to unbuildable lots


Revised Design

- 93 good buildable lots
- 5850 If of road
- \$6900+/lot approximate construction costs \$644,000 approximate total
- Saved \$60,000 in road construction costs (4 extra lots cost \$15,000/lot)
- Expanded park / greenway area
- Preserved wet pasture area
- Possible \$320,000 in profits for 16 lots at \$20,000 vs \$146,000 in losses



STW RegsCosts


Ex Hospital Site, Dublin, OH

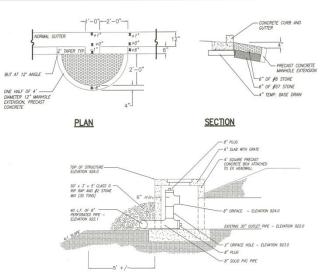
Parking Cost Comparison

Dublin Methodist Hospital

Proposed LID Measures

Minimize Impervious Impacts with impervious runoff into 28 vegetated areas and 26 grassed basins

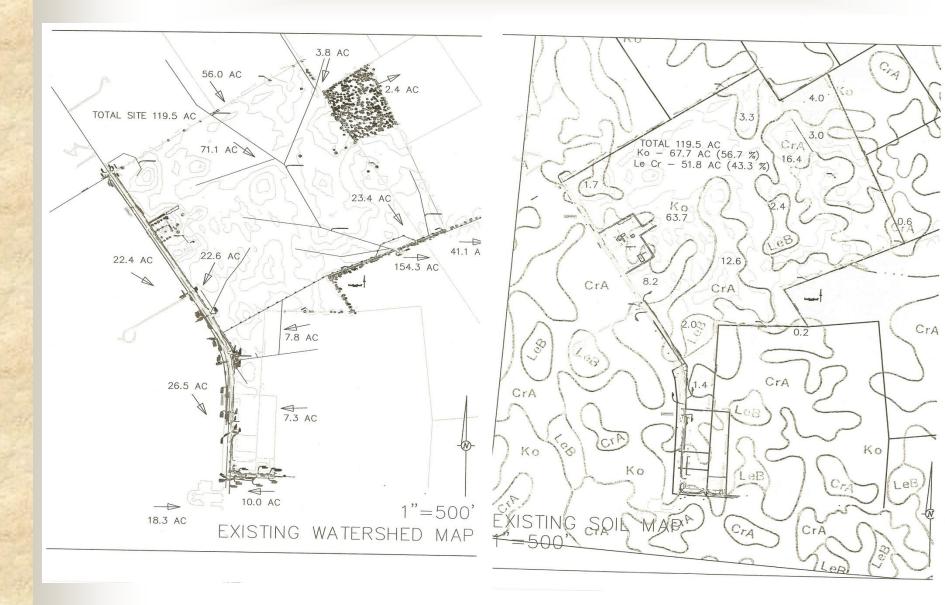
Maximize Flow Lengths using sheet flow, curb cuts, grass swales, basins, wetland swales, and ponds


Maximize Infiltration with 26 grass detention basins, 5 wetland swales, 5 wetland ponds > 4 days release duration

Provide Water Quality Filtration with 3.5 ac ft WQ volume in grass basins, wetland swales, and wetland ponds

Minimize Flow Velocities using wetland swales at 0.1% slopes and undersized storm drain pipes

Provide Controlled Flood Storage within multiple basins throughout site provides > 18 acft storage



Dublin Methodist Hospital

New High School, Hilliard, OH

Big Darby Creek Stormwater Permit General Permit OHC100001, 10/27/06

Difference

- -Submit SWPPP with NOI 45 days prior and wait for letter
- Mandatory stream setbacks and mitigation for impacts (100' min. and $W=133DA^{.43}$)
- No dry detention, stricter use of silt fence and sediment basins
- 134 cy/ac drainage area for sediment basins + 20% (100 ac site
 = 5' max depth x 190' x 380' + 3' depth x 150' x 160')
- TSS sampling at outlets for maximum 45 mg/l
- Groundwater recharge requirements annual post \leq pre

Groundwater Recharge Criteria

Page 18 of 45 Ohio EPA Permit No.: OHC100001 Issuance Date: September 12, 2006

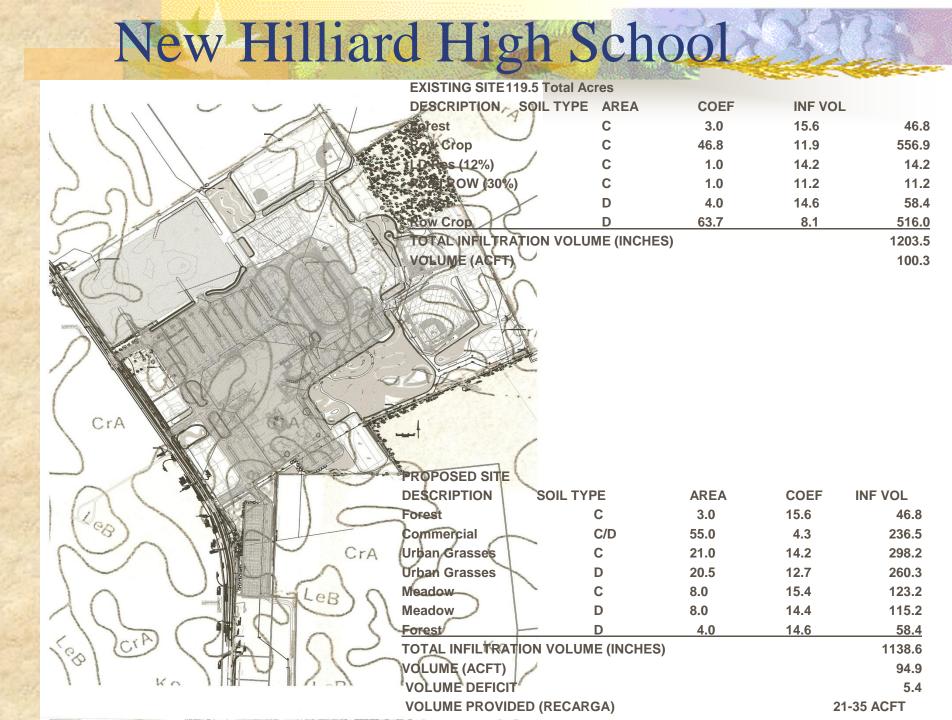
Part III.G.2.d.i

Land Use	Density	%	Recharge (inches) by Hydrologic Soil Group ²			
	(DU ¹ /acre)	Impervious	Α	в	С	D
Wood / Forest	-	-	17.0	16.6	15.6	14.6
Brush	-	-	17.0	16.6	15.6	14.6
Meadow	-	-	17.0	16.5	15.4	14.4
Managed Wood	-	-	16.9	16.0	14.7	13.4
Pasture	-	-	16.5	15.9	14.4	13.0
Row Crop	-	-	15.8	14.2	11.9	8.1
Urban Grasses	-	÷	15.7	15.7	14.2	12.7
Low Density Residential	0.5	12%	15.7	15.7	14.2	12.7
Low Density Residential	1	20%	14.8	14.8	13.7	12.2
Medium Density Residential	2	25%	11.5	11.5	11.5	11.5
Medium Density Residential	3	30%	11.2	11.2	11.2	11.2
Medium Density Residential	4	38%	9.6	9.6	9.6	9.6
High Density Residential	≥5	65%	7.3	7.3	7.3	7.3
Commercial	-	90%	4.3	4.3	4.3	4.3

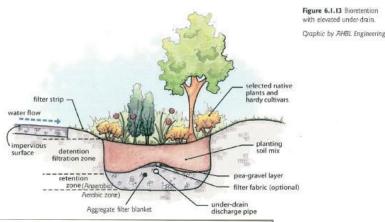
 Table 1

 Annual Average Expected Total Groundwater Recharge³

¹DU = Dwelling Units


 $^2\mbox{Hydrologic soil}$ group designations of A/D, B/D, and C/D should be considered as D soils for this application

³ These values apply when recharge of the aquifer is expected; recharge to the bedrock aquifer can be expected when the potentiometric head of the glacial aquifer is greater than the bedrock aquifer.


 $-Vre = AREA \times Dre/12$

- Calculate annual pre-dev and post-dev infiltration volumes
- Mitigation if post-dev < pre-dev

- Preferred mitigation convert ex land to higher recharge use or create onsite infiltration system

LID - Rain Gardens

Plant List

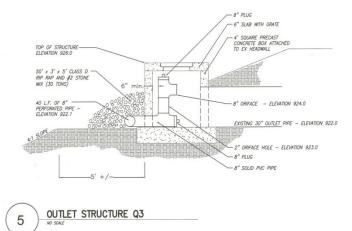
Plant	Sun/S	hade	Moisture*	Color	Height	Bloom Period
Flowers						
Aromatic Aster Aster Oblongifolius		ŧ	average to dry	blue/purple	1 - 3 ft.	Aug - Oct
Cardinal Flower Lobelia cardinalis		*	wet to moist	red	2 - 4 ft.	July - Sept
Great Blue Lobelia Lobelia siphilitica		¥	wet to moist	blue	2 - 4 ft.	Aug - Sept
Marsh Milkweed Asclepias incarnata		*	wet to moist	pink	4 - 5 ft.	July - Aug
Butterfly Milkweed Asclepias tuberosa		*	moist to dry	orange	1 - 3 fL	June - Aug
Prairie Blazing Star Liatris pycnostachya		*	moist to dry	purple	2 - 5 ft.	July - Aug
Yellow Coneflower Ratibida pinnata		*	moist to dry	yellow	3 - 4 ft.	June - Aug
Purple Coneflower Echinacea purpurea		*	moist to dry	purple	2 - 4 ft.	June - Aug
Wild Geranium Geranium maculatum	*	*	moist	pink	12 - 24 in.	April - May
Celandine Poppy Stylophorum diphyllum		*	moist	yellow	16 - 24 in.	April - May
Black-Eyed Susan Rudbeckia fulgida 'Goldsturm'			moist to average	yellow	2 - 3 ft.	July - Sept
Daylilies Hemerocalis spp.		¥	moist to average	various	1 - 3 ft.	May - Aug
Prairie Coreopsis Coreopsis palmata		¥	average to dry	yellow	1 1/2 - 2 ft.	June - July
Grasses & Sedges						
Fox Sedge Carex vulpinoidea		*	saturated to wet	green leaves, brown in fall	2 - 3 ft.	May - July
Soft Rush Juncus effusus		*	saturated to wet	green leaves,	2 - 4 ft.	June - Aug
Little Bluestem Schizachyrium scoparium			average to dry	blue-green, bronze in fall	2 - 4 ft.	Aug
Prairie Dropseed Sporobolus heterolepis		*	average to dry	green leaves, copper in fall	1 1/2 - 2 ft.	Aug - Oct
Shrubs Red-twigged Dogwood Comus sericea		*	wet to dry	white flower,	6 - 12 ft.	May - June
Blueberries, high bush var. Vaccinium spp.		ŧ	moist	red fall foliage	4 - 6 ft.	June - Aug Fruit
Black Chokeberry Aronia melanocarpa		ŧ	moist to dry	white flowers red fall foliage	3 - 6 ft.	May

with elevated under-drain.

Rain Gardens

Rain gardens are attractive, landscaped areas planted with perennial native plants which don't mind getting "wet feet". Built in a bowl shape, the gardens are designed to increase infiltration allowing rain and snowmelt to seep naturally into the ground. Benefits of rain gardens are multiple; they recharge groundwater supply, prevent water quality problems, provide habitat for birds and butterflies, and are great looking landscape features.

History of the Rain Garden


Rain gardens were first used in Maryland in the early 1990s to address pollution that was threatening the Chesapeake Bay. They were developed based on the idea of the bioretention basin. These basins were initially designed as a Best Management Practice (BMP) to minimize the impacts of development and storm water runoff. Bioretention basins are depressions which collect and hold storm water runoff. Slowing the flow of surface runoff allows time for pollutants to break down or settle out of the water before it slowly continues its flow to the nearest river or lake.

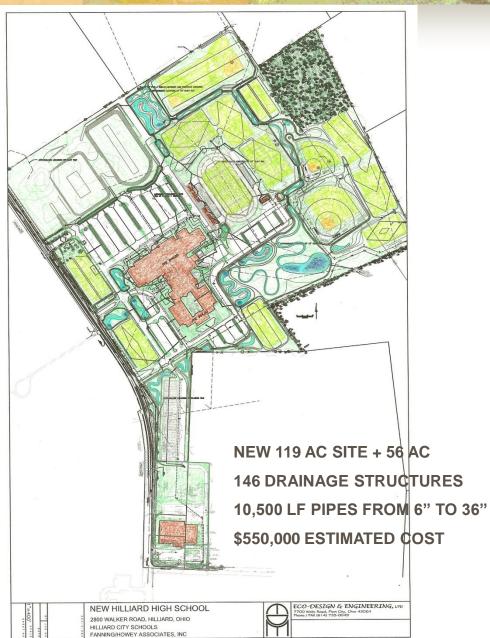
While detention basins are primarily used to contain water from a substantial drainage area, rain gardens are designed for use on smaller, residential lots, giving the homeowner the ability to reduce the amount of storm water runoff that flows from the yard.

Why Do We Need Rain Gardens?

As development increases, the ability of our environment to perform its natural processes decreases. This is because the natural landscape that was once able to absorb and clean storm water is covered by impervious surfaces. Impervious surfaces are simply surfaces that water is unable to penetrate, such as roads, rooftops, and driveways.

Increased impervious surfaces result in an increased amount of storm water runoff and an increased chance for pollution to enter our waterways through our storm sewer systems. Pollution that results

- 6" SLAB WITH GRATE


U C 1 5 onserv

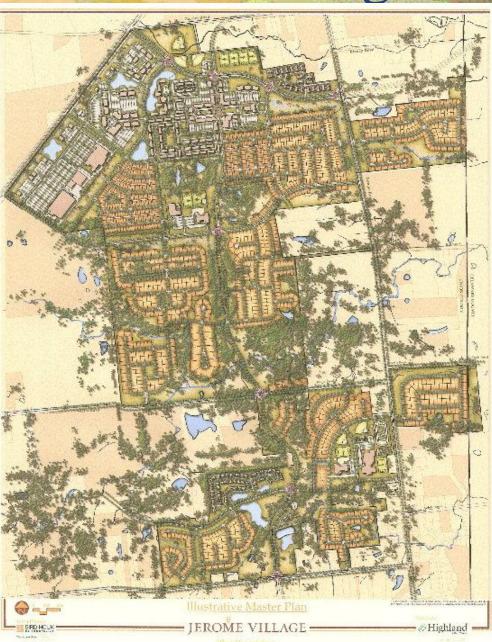
Franklin Soil and Water Conservation District

New Hilliard High School

New Hilliard High School

Proposed Stormwater Management System

Parking Island Rain Gardens-11


Basin Rain Gardens - 11

- Water Quality Basins 3
- ■Wetland Channel Systems 9
- ■Vegetated Basins 2
- ■Extended Wetland Detention 1
- ■20.5 Ac Greenspace for Stormwater
- ■5.4 AcFt Water Quality Volume at 1'
- ■48.4 AcFt Flood Storage at 4' ave
- Daylighting Farm Tiles 3000 LF
- ■Open Channel Systems 8000 LF
- ■36 Basins and 59 Inlets (19 PD)
- ■119.5 Ac Site, 60% Open Space
- ■SWPPP with 95% trap efficiency
- **TSS** Monitoring
- BMP Schedule

New Hilliard High School

Jerome Village – New Town Dev

1500 AC SITE

PHASE 1 - 2200 LF NEW PUBLIC ROADS

TRADITIONAL STORM DRAIN DESIGN

18 CURB INLETS, 7 INLETS, 9 MANHOLES, 4 CURB CUTS, 3445 LF PIPES FROM 12" TO 24", 5 HEADWALLS, 2 BASINS, 420 LF SWALES

\$189,000 ESTIMATED COST

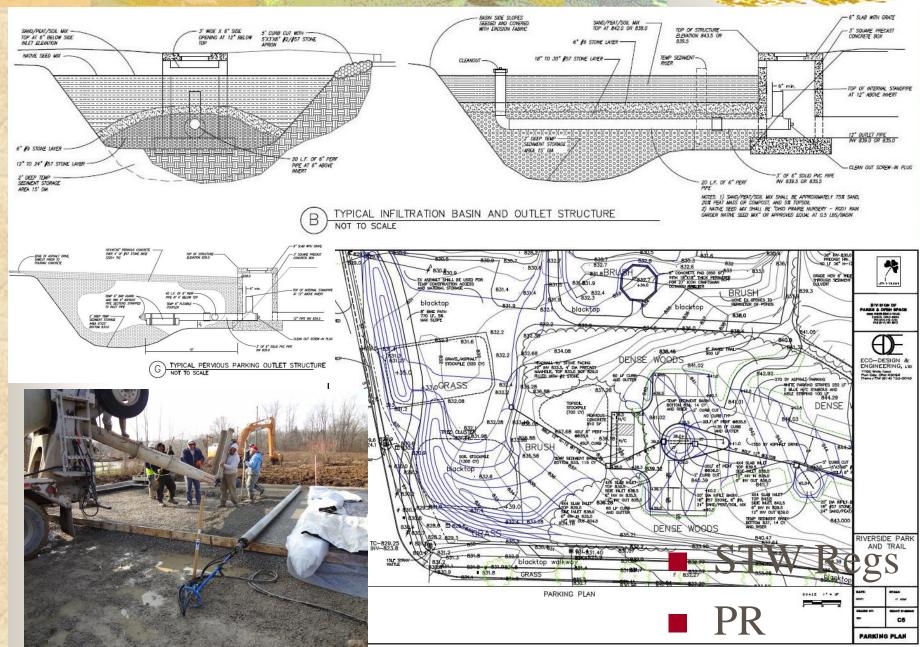
LOW IMPACT DESIGN SYSTEM

14 CURB INLETS,10 INLETS, 1 MANHOLE, 8 CURB CUTS, 1820 LF PIPES FROM 12" TO 18", 15 HEADWALLS, 9 BASINS, 400 LF SWALES

\$125,000 ESTIMATED COST

- STW Regs
- Costs
- Owner Change

Springs Park, Dublin, OH



Test CasePR

Riverside Park, Dublin, OH

Facilities Parking, Dublin, OH

Random Thoughts for LID Success

Reallocate green space Reverse vertical concepts Seek opportunities early Pursue Volume Based Design Protect Water Quality Improve profitability Scott E Sonnenberg, PE, LA, CPESC Eco-Design & Engineering, Ltd, 7700 Wells Road Plain City, Ohio 43064, Ph/FAX 614-733-0049 scottesonn@aol.com