

Modelling LIDs using PCSWMM and EPA SWMM5

March 28, 2012 Presented by: Rob James (CHI) Credit to: Lewis Rossman (US EPA)

FIGURE 2.1 Runoff coefficient as function of the duration of rain, according to a study by Pecher.

Processing power increase over the history of PCSWMM

100,000,000

TIMES

PCSWMM`s computational grid at CHI

1,000,000,000,000

FLOPS

So how much is 1 trillion floating point operations?

1 x 60s x 60m x 2100h x 40y

$\frac{302,400,000}{1,000,000,000,000} = 0.03\%$

PCSWMM: Spatial DSS for EPA SWMM5

PCSWMM: Spatial DSS for EPA SWMM5

PCSWMM/SWMM5 LID toolbox

- Physically-based processes
- Flexible components
- SWMM Version 5.0.022
- Simplifies the modeling of:
 - Lot level implementations
 - Watershed scale or city master planning
 - Single event
 - Continuous
 - Performance degradation

Examples of SWMM5 LID controls

EPA SWMM5 LID toolkit: follows the methodology of PCSWMM for PP

🚓 PCSWMM for Permeable	UNI ECO-STONE Pavements:	_ 🗆 🗵
<u>F</u> ile <u>H</u> elp		
D 🚅 🖃 🎒 🚈 🖿		
	UNI ECO-STONE® Perm Pavement Input Wizard Welcome to the Input Wizard. This wizard will step yo the information required for determining the capacity of proposed UNI ECO-STONE permeable pavement de need help at any point, click on the Help button belo To start with, please enter the units you wish to perfor the analysis with: © U.S. units © Metric Units	eable ou through of your sign. If you w.
	Help < Back. Next > R	un Model

Conceptual Model of an LID Process

Flow Balance Equations

$$\frac{\partial d_1}{\partial t} = q_0 - e_1 - f_1 - q_1$$

$$D_2 \frac{\partial \theta}{\partial t} = f_1 - e_2 - f_p$$

$$\phi \frac{\partial d_3}{\partial t} = f_p - e_3 - f_3 - q_3$$

Infiltration Flux

Classical Green-Ampt Eqn: (depth d is normally ignored)

$$f = K_{sat} \left(1 + \frac{(\phi - \theta)(d + \psi)}{F} \right)$$

Effect of ponded depth (d) on infiltration rate ($K_{sat} = 0.5$ in/hr)

Percolation Flux

Rate of percolation (f_p) through the unsaturated soil zone as a function of moisture content (θ) is described by Darcy's Law:

$$f_{p} = K(\theta) \left(1 + \frac{\psi(\theta)}{D} \right)$$
$$K = K_{sat} \exp(-(\phi - \theta)HCO)$$
$$\psi = 135 \exp(-(\theta - \theta_{FC})PCO)$$

K = hydraulic conductivity, ψ = capillary tension, ϕ = porosity, θ_{FC} = field capacity, and HCO and PCO are coefficients.

Outflow Fluxes

- Flux rates are functions of zone's water depth (d)
- \circ Surface zone
 - Overland flow using Manning's formula

 $Q = (1.49/n)AR^{2/3}S^{1/2}$ where A and R depend on d

Overflow using the weir equation

 $Q = C_W L(d)^{1.5}$

• Storage zone underdrain flow

 $Q = C_D(d)^{\eta}$

n = Manning's roughness, A = flow area, R = hyd. radius, S = surface slope, L = length of weir crest, and C_w , C_D , and η are coefficients.

Representing Different LID Alternatives

LID Alternative	Zones	Processes (besides ET)
Rain Barrel	Surface,	Surface Overflow
	Storage	Storage Underdrain Flow
Porous Pavement	Surface,	Surface Overland Flow
	Storage	Storage Infiltration*
Infiltration Trench	Surface,	Surface Overflow
	Storage	Storage Infiltration
Vegetative Swale	Surface	Surface Overland Flow
		Surface Infiltration
Bioretention Cell	Surface,	Surface Overflow
	Soil,	Soil Infiltration
	Storage	Soil Percolation
		Storage Infiltration*

*May also include storage underdrain flow

Bio-retention cell – 'Street Planter'

LID example: Valleyfield, PQ

- New residential development to include 22 boulevard planters
- Reduce minor system inflow
- Reduce pollutant loading

Boulevard Planters

Alternate designs

Valleyfield, Quebec – LID retrofit example

Bio-retention cell to be installed in typical residential neighbourhood

PCSWMM LID representation

LID Usage Editor: S1	100	×
LID usages:	LID control name:	
Street_Planter	Street_Planter	-
	Number of replicate units	4 🚖
	LID occupies full subcatchment	
	Area of each unit (m²)	100
	% of subcatchment occupied	2.878
	Top width of overland flow surface of each unit (m)	3.3
	% initially saturated	0
	% of impervious area treated	100
	Send outflow to pervious area	
	Detailed report file (optional)	X
	C:\Users\Rob James\Documents\CH	Il Presentations\1
<u>A</u> dd <u>D</u> el	<u>о</u> к	<u>C</u> ancel

PCSWMM LID representation: surface

LID Control Editor	243 T. 100	
LID Control Editor LID controls: Street_Planter	Name: Street_Planter LID type: Bio-Retention Cell Surface Soil Storage Underdrain Storage depth (mm) Vegetative cover (fraction) Surface roughness (Mannings n) Surface slope (percent)	100 0.99 0.3 0.25
<u>A</u> dd <u>D</u> el	<u>Q</u> K	<u>C</u> ancel

PCSWMM LID representation: surface storage

LID Control Editor LID controls: Street_Planter	Name: Street_Planter LID type: Bio-Retention Cell Surface Soil Storage Underdrain Storage depth (mm) Vegetative cover (fraction) Surface roughness (Mannings n) Surface slope (percent)	100 0.99 0.3 0.25
<u>A</u> dd <u>D</u> el	<u>0</u> K	<u>C</u> ancel

PCSWMM LID representation: soil

LID Control Editor	AND NO.	×
LID controls:	Name:	
Street_Planter	Street_Planter	
	LID type:	
	Bio-Retention Cell	
	Surface Soil Storage Underdrain	
	Thickness (mm)	900
	Porosity (volume fraction)	0.44
	Field capacity (volume fraction)	0.11
	Wilting point (volume fraction)	0.05
	Conductivity (mm/hr)	25
	Conductivity slope	7.5
	Suction head (mm)	88.9
<u>A</u> dd <u>D</u> el	<u><u>o</u>k</u>	<u>C</u> ancel

PCSWMM LID representation: storage

LID Control Editor	AND SHOW	×
LID controls:	Name:	
Street_Planter	Street_Planter	
	LID type:	
	Bio-Retention Cell	
	Surface Soil Storage Underdrain	
	Height (mm)	450
	Void ratio (voids/solids)	0.75
	Conductivity (mm/hr)	6
	Clogging factor	0
	Note: use a conductivity of 0 if the unit has an impermeable bott	LID om.
<u>A</u> dd <u>D</u> el	<u>O</u> K	<u>C</u> ancel

PCSWMM LID representation: tile drain

LID Control Editor	
LID controls:	Name:
Street_Planter	Street_Planter
	LID type:
	Bio-Retention Cell
	Surface Soil Storage Underdrain
	Drain coefficient (mm/hr) 0
	Drain exponent 0
	Drain offset height (mm) 0
	Note: use a drain coefficient of 0 if the LID unit has no underdrain.
<u>A</u> dd <u>D</u> el	<u>O</u> K <u>C</u> ancel

Continuous LID analysis

Continuous LID analysis: small events

Continuous LID analysis: large events

29/5/1991 16:39, 0.089

Continuous LID analysis: clogging potential

Enabling continuous LID analysis: Rainfall Processing with PCSWMM

Runoff for 1-inch, 6-hr Event

---- No Planters ----- 3 Planters ----- 5 Planters

Rossman (2009)

Effect of Number of Planters

Rossman (2009)

Loss of Stored Water Over Time

---- Losses (in/hr) ---- Storage Depth (ft)

Rossman (2009)

Long Term Performance

Rossman (2009)

Olds College Demonstration Project

Olds College: lot-level analysis

Olds College: subcatchments

Olds College : roof to cistern

Olds College: roof to landscaping

Olds College : absorbent landscaping

Olds College: bio-retention area

Olds College : parking lot 2

Olds College: oil & grit separator

Olds College: parking lot 2

Olds College: permeable pavement

Olds College: wet pond

Olds College: Irrigation

Continuous simulation of re-use

Irrigation

Weekly \	Hatering Sc	hedule #1 (i	Depth of Irri	igation) (mn	1)			
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	
Jan								
Feb								
Mar								
Apr								
May						10		
Jun			10			15		
Jul		10		10		15		
Aug		10		10		15		
Sep			10			15		
Oct								
Nov								
Dec								

If the rainfall in the preceding two days is more than 10 mm, irrigation is delayed.

Irrigation

ekly ¥	atering Scl	nedule #1 (C	epth of Irri	gation) (mm)		
	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Jan							
Feb							
Mar							
Apr							
May						10	
Jun			10			15	
Jul		10		10		15	
Aug		10		10		15	
Sep			10			15	
Oct							
Nov							
Dec							

Rule 1
 IF SIMULATION MONTH = 5
 AND SIMULATION DAY = 6
 AND NODE SU_RG DEPTH = 0
 AND NODE SU DEPTH > 2
 THEN PUMP P1 SETTING = 1

Rule 2
 IF SIMULATION MONTH = 6
 AND SIMULATION DAY = 3
 AND NODE SU_RG DEPTH = 0
 AND NODE SU DEPTH > 2
 THEN PUMP P1 SETTING = 1

Rule 3
 IF SIMULATION MONTH = 6
 AND SIMULATION DAY = 6
 AND NODE SU_RG DEPTH = 0
 AND NODE SU DEPTH > 2
 THEN PUMP P1 SETTING = 1.5
 ELSE PUMP P1 STATUS = OFF

Single event LID analysis: detention pond sizing

Design storm analysis: pond sizing no LIDs

Design storm analysis: pond sizing with LIDs

PCSWMM/SWMM5 LID modeling

- Physically-based processes
- Flexible components
- SWMM Version 5.0.022
- Simplifies the modeling of:
 - Lot level implementations
 - Watershed scale or city master planning
 - Single event
 - Continuous
 - Performance degradation