Ontario Case Studies of LID Design & Construction for Retrofits and New Developments:

"Real world" experience and lessons learned

Chris Denich, M.Sc., P.Eng Aquafor Beech Ltd

TRIECA _ March 26-27th, 2013

Overview

- New Development
- ROW- Upper Middle Road
- Retrofits
- Public Realm- Green Glades
- Public Realm- Beach Boulevard Park Retrofit
- ROW Retrofit Lakeview

Upper Middle Road

Background

- Bioretention Unit
- New Development
- Oakville, Ontario
- Constructed in 2011
- ▶ Facility– 1,600m²
- Accepts 4ha road drainage
- > 25mm event

Rational

- Designed and constructed to address stormwater impacts to the habitat of Red-Side Dace, a fish species provincially designated as At Risk and protected under the Species at Risk Act (SARA).
- General reluctance to approve conventional SWM approaches: Wet ponds, wetlands and OGS for water quality
- Facility that can be characterized/become habitat are discouraged
- Thermal impacts are now a concern
- Disruption of baseflow, etc

Site Conditions

- Hydrogeological Study of Groundwater Surface Water Interaction (Aquafor, 2009)
- Previous Geotechnical reports 05 & 07

Soil Stratigraphy	>8m of unsorted Sand & Gravel, overlain and confined within the valley slopes by 5-10m of silty clay (Halton Till)	
Hydraulic Conductivity	Silty Clay till –low conductivity (10 ⁻⁷ to 10 ⁻¹⁰ m/s) Sand & Gravel unit – high conductivity (10 ⁻⁵ to 10 ⁻⁶ m/s) • 2-3 orders of magnitude difference •Using a sensitivity analysis, 15 mm/hr was determined using hand-driven piezometers & sharp response to rainfall events and rapid drainage as baseflow	
Seasonally High Groundwater Table Elevation	±122.5m	
Groundwater Table Fluctuation	0.2-0.5m	

Bioretention Design

Bioretention Facility Design

Conceptual Flow Path

- Can be characterized by the rain event type: Small Event
 - Frequent/ 'typical events' representing the majority of the annual rainfall events, typically characterized by low intensity, long duration.

Conceptual Flow Path

Can be characterized by the rain event type: Large Events

 Infrequent/ Large Events – these types of events occur infrequently but are characterized by high intensity and short duration.

Media Development

Bioretention Media is the functional component of the system - critical to the long-term function of the system

TABLE 1: MEDIA FOR BIOSWALE FACILITY

MEDIA	SIZE	% BY WEIGHT
1 - SAND	2 to 0.05mm	85 - 88%
2 - FINES	< 0.050mm	8 - 12%
3 - LEAF COMPOST (Organic Matter)	-	3 - 5%

Notes:

- CEC greater than 10 mg/100g
- PH = 5.5 7.5
- K greater than 25mm/hr

Soil Texture Classification:

- No objects greater than 50mm
- Media obtained from vendor to be tested to confirm design specifications prior to installation. Field engineer to confirm conformance with specification prior to installation.

Media Development

Hand Mixed Prototypes

Media Development

Mechanically Mixed Prototypes - Mass Production

Construction – QA/QC

For Construction - Large Site

Construction - QA/QC

Infiltration Testing During Construction: 50-75mm/hr

Bioretention Facility Design

Bioretention Facility Design

Bioretention Facility Design

April 2012

On-Line

Green Glades Public School

Background

- Bioretention Unit Retrofit
- Mississauga, ON
- Constructed in 2011
- ▶ Facility– 11m²
- Accepts 0.03ha road & roof drainage
- ▶ 25mm event

Green Glades Public School

Rational

Site Conditions

Guelph Permeameter – In-situ infiltration testing

Importance of Locates

Design - Planting Plan

Design - Planting Plan

For Construction - Small Site

Green Glade, August 10, 2011 24 hours after a 23 mm event

Green Glades - Before

Green Glades - After

After

- ROW Retrofit within older residential area
 - Bioswales & Perforated Pipe System
 - Permeable pavement
 - Bioretention media for filtration and infiltration
- Mississauga, ON
- Construction Spring 2012
- Accepts road & property drainage

Public Responses to Presented Alternatives

(Most Important to least important)

- 1) Parking
- 2) Water Quality
- 3) Environmental Benefits
- 4) Prevent Flooding
- 5) Integration with the Environment
- 6) Improve Conveyance
- 7) Integration with Existing Infrastructure
- 8) Aesthetics

Other results

- No Sidewalks
- Cost not important
- Same Driveway width after construction
- 50% want perennial plants
- Willing to do maintenance

Encroachment Issues

Encroachment Issues

Utilities

Traffic Safety

Traffic Safety

Flooding Issues

Road Widths (Emergency Vehicle Access)

Effect of winter Operations on a 6.0m Road width

Road Widths

(Vehicle Access - Emergency & Snow Removal)

7.2m widths provides access but is less than current City Standard (8.0m)

Selected to reduce impervious cover and allow for additional area for bioswales

Parking

Geotech. and Infiltration Testing

Geotech. and Infiltration Testing

Geotechnical investigation undertaken within the existing ROW/ditches

Soil Stratigraphy	5-30cm of topsoil 0.2-1.5m of Clayey Silty Fill with some sand & gravel Clayey Silt Till deposits at depth
Hydraulic Conductivity	At 1.0-1.2m depth below surface- design infiltration rate was determined to be 5.45mm/hr (2.5 SF) – 5mm/hr used in the design
Groundwater Table Elevation	Observations included generally no GW (GW observed at surface in some locations - attributed to water perched in the ditches and fill stratum)

Water Service Line Punctured

Bell Line Damaged (Bell Service Onsite)

To avoid an existing gas line, a section of perforated underdrain was notched to allow the gas line to transect the pipe

Materials not identified in the geotechnical reports!

Following Specs

Grading Issues

Changes after Design

- Re-grading of properties;
- Infil-development (3 homes);
- Abandoned and/or unmarked utilities;

Sump-pump and property drainage

connections;

No trees;

ESC

Sacrificial Geotextile

ESC

Inlet ESC Controls

Final Design

Beach Boulevard

Background

- Soakaway Pit
- Park Redevelopment of vacant land
- Hamilton, ON
- Constructed 2011
- Accepts parking lot drainage for up to 100 year storm (full infiltration)
- Combined and separated storm sewers - City desire to minimize flows resulting from infill developments

Site Conditions

Groundwater -Seasonally High

Sands and Gravel

Site Conditions

Groundwater - Seasonally High = Major Design Concern due to site location

Infiltration Results

Table 1 - In-Situ Guelph Permeameter Testing Summary

	Design Infiltration Rate (mm/hr)	Factor of Safety (SF)	Calculated Design Infiltration Rate (mm/hr)	Testing Depth below surface (m)	Approximate Ground Elevation (m)	Infiltration testing invert (m)
Location 1	160	2.5	64	1.0	76.2	75.2
Location 2	179	2.5	72	0.75	76.15	75.4
Location 3	133	2.5	53	0.70	76.25	75.55
		Average	62.9			

SF – corresponds to non-stratified soils condition i.e. based on completed geotechnical investigation, less permeable soil horizons within 1.5m below the proposed bottom elevation of the BMP do not exist.

Design

Beach Boulevard - As Built

Thank-You

QUESTIONS?

Chris Denich Aquafor Beech Ltd. denich.c@aquaforbeech.com

