

3rd Annual TRIECA Conference – March 25 & 26, 2014 www.trieca.com

Thank you to all of our TRIECA 2014 Sponsors!

Retrofit of the IMAX Head Office Parking Lot with Low Impact Development Technologies

Amna Tariq - Water Resources Specialist

Phil James – Manager, Urban Watershed Protection & Restoration

March 26th, 2014

Presentation Outline – 45 mins

- WaterTAP Video
- Goals & Drivers for IMAX
- Design Overview
- Monitoring Plan
- Lessons Learned
- Next Steps
- Q&A

Play WaterTAP Video

IMAX Corporate Goals

- Co-Chairman & Co-Chief Executive Officer Richard Gelfond of IMAX, has expressed concern over the shrinking time we have to address environmental issues and the need to escalate action on the environment;
- "Need for <u>increased</u> <u>awareness</u> and <u>taking action</u> otherwise our legacy is going to be a barren planet!"

Credit Valley Conservation

Lower O&M Costs

Correcting drainage Issues

Cracking, upheavel, potholes

(saturated granular bases, inadequate base, poor drainage)

Better snow storage (source: Smart about Salt)

Need for excessive salt application

Lower O&M Costs

- Concrete pavements have a significantly lower life-cycle cost than alternatives such as asphalt.
- Although the initial cost of pervious installation may be slightly higher, concrete saves money in the long run due to its superior durability and strength.
- It requires fewer repairs than asphalt, and has a longer overall lifespan.

Reduced Liability

- Slips, Trips and Falls result in some of the most common and <u>costly</u> liability claims against business owners (*Insurance Bureau of Canada*);
- <u>Average WSIB claim costs</u> companies \$ 22,000!!
- Pervious pavements exhibit a <u>high level of functionality</u> during winter conditions <u>skid</u> <u>resistance</u>, and <u>salt</u> <u>reduction</u>.

| Credit Valley | Conservation

Stormwater Fees

Mississauga moves toward pavement tax

A levy on space devoted to non-absorbent surfaces will help pay for better storm water systems in the wake of the devastating July 8 storm.

It's raining user fees in Mississauga

Dec 04, 2013 | Vote 🍈 0 🛛 🤍 0

City set to implement stormwater fee in 2016

By 🖂 Chris Clay

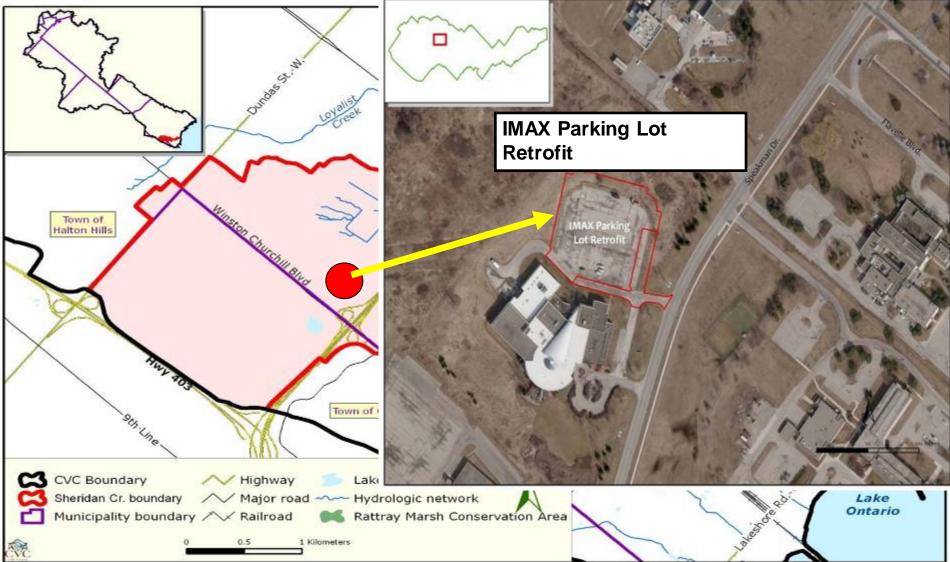
The average homeowner in Mississauga will pay about \$94 a year under a new fee program designed to have property owners with a lot of concrete and hard surfaces pay more.

The City of Mississauga's stormwater infrastructure, which includes storm sewers, catch basins, stormwater management ponds, bridges and culverts, is aging and in need of repairs. However, the municipality can no longer afford to pay for them solely through property taxes and development charges.

FRED LOEK / MISSISSAUGA NEWS

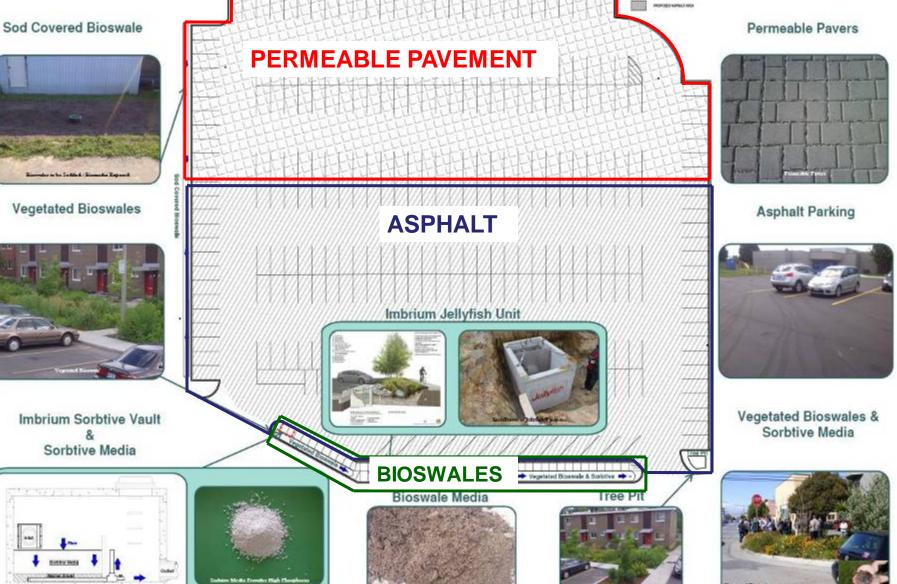
eluge that hit the GTA on July 8, as damage to this ater system is badly in need of improvements, on properties that contribute most to the runoff

Taking Action


- Taking local action by reducing IMAX's water footprint protecting our local water resources and building resilience;
- Advancing science, the environment and health by providing the opportunity to test innovative technologies that will inform decision makers, enhance productivity and improve outcomes;
- Aligns with IMAX's corporate greening goals.

Credit Valley

Sheridan Creek Watershed



IMAX Corporation Parking Lot Expansion & Redevelopment

NOPOSE MINARALI AVENIES

Credit Valley Conservation

Permeable Pavement

- ³/₄" Clear Stone
- 40% void space/no fines
- 500 mm aggregate depth
- 348 m3 in storage
- 12.2 hrs drawdown time

Granular "O"

- 20% void space/fines
- 350 mm aggregate depth
- 141 m3 in storage
- 4.95 hrs drawdown time

Permeable Pavement Design

System Component/ Parameter	Value		
	Cross-section No. 1: Open Graded angular 20 mm ø stone PICP Cross-section	Cross-section No. 2: Granular 'O' PICP Cross-section	
Paver Thickness and Type	80 mm – Eco Optiloc(R) by Unilock		
Bedding	50 mm of No.8 angular chip stone (5-7 mm ø)		
Aggregate Depth	500 mm	350 mm	
Geotextile	Woven multi-layered geotextile (RS380i)		
Total PICP Surface Area	3145 m ²		
Approx. Surface Dimensions	48 m x 34 m (1500 m ²)	48 m x 34 m (1645 m ²)	
Total Excavation Depth	630 mm	480 mm	
Total Storage	348 m ³ *	141 m ³ **	
Underdrain System	200 mm ø perforated HDPE main collection pipe	150mm ø perforated HDPE Laterals 200mm ø perforated HDPE main collection pipe	
Drawdown time based on max pipe flow –Hydrologic Analysis) Assumes complete dewatering of base material and instantaneous storage)	12.2 hrs	4.95 hrs	
* assumes a 40% void ratio ** assumes a 20% void ratio			

Credit Valley Conservation

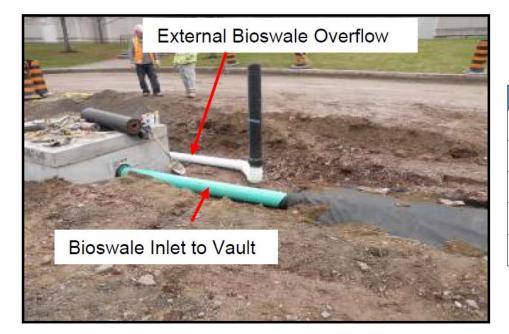
Impermeable Liner

MW-06 IX7-S3 Area 7 Perm. Pave. with 4" Clear Stone with Bentofix Liner IX7-S5

Parameter	Bioswale #1 – Sorbtive® Vault	Bioswale #2 – Jellyfish® Filter	Bioswale #3 – Stand Alone		
Contributing drainage area	1125 m ²	1350 m ²	1566 m ²		
Water quality volume (WQV) to be treated		33.75 m ³			
*Note: 25 mm event corresponds to 90% of the total annual	28.13 m ³	(25 mm	39.15 m ³		
rainfall depths	(25 mm event)	event)	(25 mm event)		
Average ponding depth		300 mm			
Engineered media infiltration rate					
(assumes 50 mm/hr = SF of 2; measured infiltration rates of					
media					
range from 80-120 mm/hr)	range from 80-120 mm/hr) 50 mm/hr				
	0 - 2.6 mm/hr				
Native soils infiltration rate	(bedrock and clay fill respectively)				
Shredded hardwood mulch depth	50 mm				
Drawdown time	24hrs				
Total facility depth	0.675 m				
Engineered media	0.3-0.4 m				
Gravel detention layer	0.4 m				
Perforated HDPE underdrain (diameter)	200 mm				
Required surface area	a of facility*				
Surface area of facility (as designed)	40 m ²	62 m ²	72 m ²		
Required surface area of facility to achieve 25 mm water quality					
treatment	16 m ²	19 m ²	23 m ²		
% of 25 mm water quality achieved	100%	100%	100%		
Required surface area of facility to achieve 1:10-year(51.7 mm)					
event water quality treatment*	34 m ²	40 m ²	47 m ²		
			77.111		
% of 1:10 year event (51.7mm) mm water quality achieved	100%	100%	100%		
Storage assessment (surface ponding		orage)**			
Total storage volume (as designed)	27.3 m ³	36.6 m ³	41.6 m ³		
Required stored and ponded volume -25mm event	15.4 m ³	20.1 m ³	23.3 m ³		
(% provided)	(100%)	(100%)	(100%)		
Required stored and ponded volume -1:10year (51.7 mm)	37.3 m ³	49.9 m ³	57.9 m ³		
event (% provided)	(73.1%)	(73.5%)	(71.6%)		
*Hydraulic facility calculations – Assumes bioswales functions primarily as a filtration unit (not an infiltration unit)					
**Event simulated using a synthetic 25 mm event per Chow, 1983. Assumes no outflow during rain event, facility					
simulated as a storage unit only.					

Treatment Train #1 - Bioswale with SorbtiveVAULT

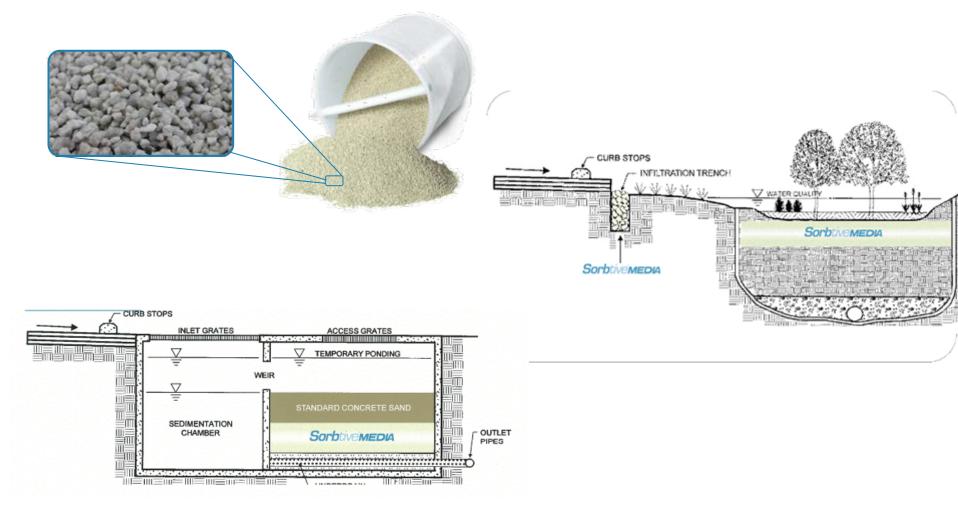
Asphalt to Bioretention to Sorbtive Media Vault


Bioretention -Primary treatment

Sorbtive Media Vault - Dissolved nutrient removal

Overflow by-passes Sorbtive Media Vault

SorbtiveVAULT Design Details



SorbtiveVAULT and Media Design				
General Tank Dimensions (m)	1.5 x 1.8			
Design Flow Rate (m³/s)	5.5 x 10 ⁻⁴			
Min. Bed Area Required (m ²)	1.51			
Volume of Media Required (m ³)	0.59			
Approx. Amount of Media Required (kg)	620			

Credit Valley Conservation

How does Sorbtive®Media work?

Treatment Train #2 - Bioswale with JellyFish Filter

Credit Valley Conservation

Asphalt to Jellyfish unit to Bioretention

Jellyfish -Cartridge filters -Oils & Greases -Large & small sediment particles

Bioretention - Further polishing & Cooling

JellyFish Filter Design Details

Hydrologic Parameters	Value
Design precipitation event (mm)	25
Runoff coefficient	0.95
Water quality discharge (L/s)	9.03
Jellyfish® Filer Design	Value
Hi-Flo treatment flow rate (L/s)	5.55
Draindown treatment flow rate (L/s)	1.39
No. of Hi-Flo cartridges required	4
No. of drawdown cartridges required	2
Total treatment flow rate (L/s)	6.94

JellyFish Filter Catchbasin

Control Bioswale

| Credit Valley | Conservation

Control Site

Credit Valley Conservation

Lessons Learned – Why do LIDs fail?

- Plans without enough detail and instruction;
- Designers who underestimate the complexities of construction;
- Contractors who do not understand the technology or importance of certain procedures;
- Lack of effective erosion and sediment control during construction.

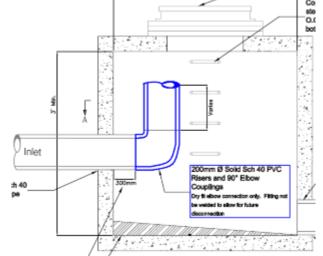
Full Time Construction Inspection

As-built survey

Lessons Learned - Erosion & Sediment Control

<u>Need to</u> <u>protect</u> <u>infiltration</u> <u>practices!</u> During construction, access to the permeable pavers was limited to a single location so that conditions could be monitored, and maintained more efficiently.

Credit Valley Conservation


Lessons Learned - Design

- Integrate monitoring infrastructure into the engineering design!
- Incorporate optimization features;
- Add additional surface inlets to minimize the chance of excessive ponding.

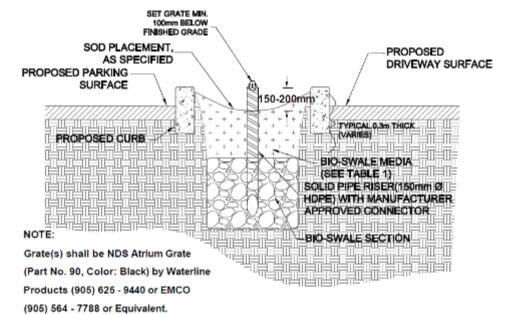
Elbow to store & infiltrate additional water

Lessons Learned - Operation & Maintenance

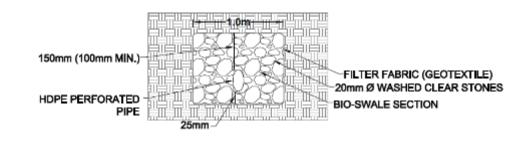
Credit Valley

Roll curb allows contractor to push snow completely off the parking lot

Meltwater does not flow back across asphalt surface creating icy conditions


Contractor pushes snow to perimeter of the parking lot

Risk of hitting curbs if curb markers are not in place



Bioretention Design Details

- Filter fabric wrapped around under drain to prevent bioretention media from migrating into the gravel layer
- Chocker coarse of pea gravel

BIO-SWALE DETAIL

Soil Media Testing Before Installation

Credit Valley Conservation

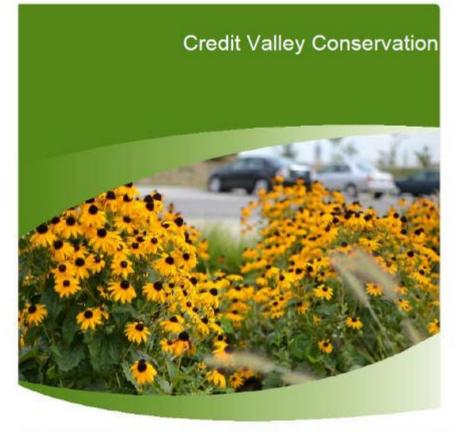
Lessons Learned - Construction

Compaction around light standards

Fine grading of bioretention areas after planting to stop short circuiting

Development of an Experimental Design Template

"OCE's Technical Problem Solving program supports shortterm projects between industry and academia that address specific technical challenges or opportunities identified by the industry partner that will have a commercial impact. The projects focus on quickly applying research and technical expertise to resolve these challenges and speed innovative products and services to market."



Credit Valley Conservation

Experimental Design Template

The experimental design will provide the framework for a multi-year performance evaluation of the IMAX parking lot retrofit;

Evaluate the capability, effectiveness and acceptance of novel LID synergies to advance innovative SWM technology acceptance, implementation and product supply and services across Ontario.

PERFORMANCE ASSESSMENT TEMPLATE FOR EVALUATING INNOVATIVE STORMWATER MANAGEMENT PRACTICES AT IMAX HEAD OFFICE, MISSISSAUGA

Credit Valley

Monitoring Plan

CVC

Credit Valley

Water Quantity Control

1. Evaluate the performance of various stormwater management practices individually and as a collective system relative to a traditional asphalt-to-catchbasin system.

2. Evaluate LID performance with respect to providing flood and erosion control.

Hydrologic Response

- What is the volume, timing and rate of outflow from LIDs and asphalt?
- What conditions (i.e. rain events) produce no outflow, produce flow and receive full treatment, cause overflow/bypass?

Volume Reduction

- What are the event-based peak flow reductions, volume reductions and lag coefficients?
- What is the overall hydrologic performance statistics for the monitored events (e.g. annual volume reduction, average peak flow reduction, etc.)

Water Quality Treatment

3. Evaluate LID performance in order to improve water quality with respect to the parameters of concern (TSS, metals, nutrients, temperature and pollutant loading etc)

- What is the water quality performance between the various LIDs versus the asphalt control site?
- What are the event-based removal efficiencies and pollutant loadings?
- What is the average annual removal rates?
- What the removal efficiencies on a seasonal basis (spring/summer/fall/winter)?

IX6-S2

IX5

rm. Pave. with 4" Clear Stone

with Bentofix Liner

Area 1 Control Site

IX1

X4

IX3

IX7

MW-05

IX6

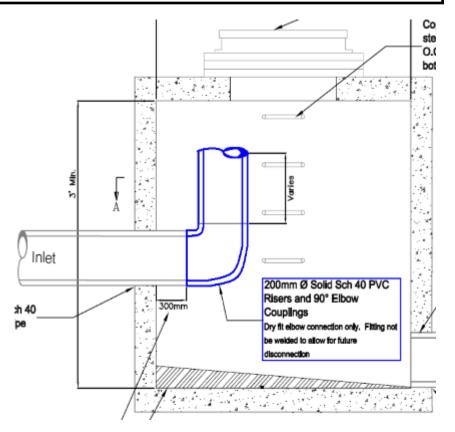
MW-06

IX7-S3

IX7-54

IX7-55

Groundwater Quality


IX5-S1 4. Evaluate any char MW-07 quality Area 5 Permeable Pavement with Granular "O" Address concern Area 6 Permeable Pavement with ¼" Clear Stone around infiltration practices in groundwater Area 2 sensitive areas Bioswale dia Unit Area 3 Bioswale + JellyFish Unit Area 4 Monitor **Bioswale** groundwater quality through IX2D wells IX2a Bioswale Sorbtive Media Unit Jellyfish Unit Bioswale

LID Design Optimization

5. Evaluate and refine the design and construction methods and practices to optimize LID performance

- Optimize the design of permeable pavement systems to meet multiple environmental objectives
- Optimize the design of LID treatment trains with enhanced filtration systems
- Compare difference between Granular O and ³⁄₄" clear stone in terms of treatment, storage and construction costs.

Maintenance & Operation

6. Evaluate long-term maintenance needs to optimize LID performance

•When does a drop in performance trigger the need for maintenance?

•What are the Infiltration test results for permeable pavement over time?

•What are the O&M needs such as surface sweeping, inlet structure clean outs, plant survival, weeding, mulching, watering, fertilizing, trash removal, media replacement, sediment removal, etc

•Are there reductions in maintenance costs (i.e. winter maintenance with salt application)?

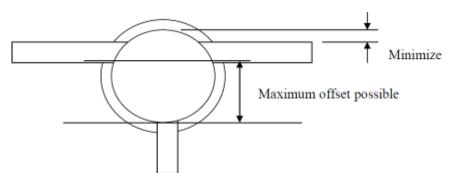
Inspection and maintenance records will be paired with quantitative monitoring data to evaluate maintenance needs and long term performance.

What are your top stakeholder priorities?

- Long term maintenance needs and impact on performance;
- Lifecycle costs;
- Water quality and quantity performance of LID design in low infiltration soils;
- How multiple LID treats and manage stormwater;
- Performance of flood control, erosion control, water quality and natural heritage protection.

Integrate monitoring infrastructure into the design to ensure that you can gather the information you need!!

Monitoring Equipment/Data Collection


Credit Valley Conservation

- Precipitation: Heated rain gauge
- Outflows: V-notch weirs
- Water levels: observational wells
- Water Quality
 - flow-proportioned composite samples
 - 10 events/year
 - general quality, nutrients, metals, oil & grease, temperature

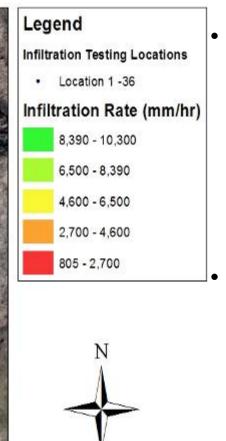
Monitoring Design Lessons Learned

- Incorporate monitoring plan into engineering design
 - Maximum pipe offset to install weir
 - Ensure enough manhole depth to accommodate monitoring equipment

Monitoring Construction Lessons Learned

- Leaking infrastructure (i.e.: catchbasin)
 - Performed water tests/pipe pressure tests

• Bioswale surface grading



Performance Results to Date

Infiltration Rate Contours

Sub-base materials:

- Granular O average: 4200 mm/hr

Credit Valley Conservation

Clear stone
 average: 5400
 mm/hr

Location:

- Center of Parking
 Spot: 5300 mm/hr
- Laneway: 4500
 mm/hr
- Parking Spot Line:
 3700 mm/hr

Water Quantity Performance

Credit Valley Conservation

IX-2b Bioretention to SorbtiveVAULT Performance

Event Type	Antecedent Dry Period (days)	Total Precipitation (mm)	Instantaneous Peak Intensity (mm/hr)	Runoff Volume Reduction (%)	Peak Reduction (%)
Largest	5	43.00	30.00	83	81
No Flow Event	1.10	10.60*	12.00	100	100

IX-3 JellyFish Filter to Bioretention Performance

Event Type	Antecedent Dry Period (days	Total Precipitation (mm)	Instantaneous Peak Intensity (mm/hr)	Runoff Volume Reduction (%)	Peak Reduction (%)
Largest	5	43.00	30.00	75	70
No Flow Event	1.10	10.60*	12.00	100	100

Water Quantity Performance

IX-5 Permeable Pavement with Granular "O"

Event Type	Antecedent Dry Period (days)	Total Precipitation (mm)	Instantaneous Peak Intensity (mm/hr)	Runoff Volume Reduction (%)	Peak Reduction (%)	
High Intensity/Large	5	43.00	30.00	38	91	
Med Intensity/Large	4	29.40	16.80	96	96	
No Flow Event	1.10	10.60	12.00	100	100	

IX-6 Permeable Pavement with ³/₄" Clearstone

Event Type	Antecedent Dry Period (days)	Total Precipitation (mm)	Instantaneous Peak Intensity (mm/hr)	Runoff Volume Reduction (%)	Peak Reduction (%)
Largest Event & No Flow Event	-	43.0	30.0	100	100

Preliminary Water Quality Performance

LID Systems	% Load Reduction										
	TSS	ТР	ОР	N+N	TKN	Cd	Cu	Fe	Pb	Ni	ZN
Bioretention-to- SorbtiveVAULT*	<u>99</u>	<u>100</u>	100	98	98	100	99	100	99	99	100
JellyFish-to- Bioretention**	<u>100</u>	<u>99</u>	98	99	99	100	100	100	100	100	100
Permeable 94 89 96 73 63 96 91 91 95 89 92 Pavement with Granular "O" Image: Comparison of the second s							92				
* Preliminary results based on one sample collected on October 31st, 2013											
** Preliminary results based on 3 samples collected on October 26 th , 31 st , and November 6 th , 2013											

Next Steps

On-going monitoring for the long term (5 year agreement with IMAX)

• Operation & Maintenance activity tracking

• Life cycle cost tracking

• Technical Report – Spring 2014

CVC | Credit Valley CVC | Conservation

Case Study -

http://www.creditvalleyca.ca/wp-content/uploads/2014/02/IMAX_Case_Study_Final_21Feb.pdf

Case Study

IMAX Parking Lot Retrofit Location: Mississauga Constructed: 2013

Business and Multi-Residential

Project Objectives, Design and Performance

 Design and construct a better functioning parking for that upgraded stormwhile management in it autochars with moders hav impact memoryment (100) betteres.

 Benefit from project partnerships to enable a variety of innovative strongeneration management inclinatelysis to be integrated into the MAX parking for inducing partnerships partner, July both? This, tamentics and Sochatward Martin.

 Conduct Infrastructure performance assessment to address knowledge gaps impeding the wide scale adaption of 105 technologies in Onlarie.

Overcoming Barriers and Lessons Learned

 Challenging soil conditions were encountered on sile requiring a conservative design that provided softwarm training end softwarm end structural support.

 Coordination and a transparent design process between GVC, product supplies, the design learn and academic expects ensured the accessful despretion of performance academication states into the BAOC parking bit.

 Contractor and MAX staff woneed together to ensure that MAX could conduct bestines as easilit during the existing claim phase.

 To ensure that conduction is performed property and proceeds on time, be care to have an individual experienced in LID conduction and design. They act as a solution and ississ between the costsuctor, client and affins stakeholders.

Practices Implemented

Barriers and Issues Encountered

Case Study Outline

The IMAX case study consists of the following sactions:

Overview of the IMAX site and project.	Page 2
Goals and Drivers	
List of goals and drivers that influenced the IMAX project.	Page 2
Project Successes	
Outlines the accomplishments of the project team.	Page 3
Overcoming Barriers & Lessons Learned	
List of barriers that were encountered during the project, how they were addressed, and the lessons learned from them.	Page 4
Pre-retrofit Site Conditions	
Describes the pre-retrofit site conditions at the IMAX site and puts the reasons for implementing LID throughout the parking lot.	Page 6
LID Planning and Regulations	
Provides an overview of the approval requirements that were required prior to the construction of the project.	Page 7
Proposed Design Concept	
Provides an overview of the retrofit design and the LID practices that were incorporated	Page 8
Pre-design Tasks	
Describes the in-field tasks undertaken to characterize the site and feed into the detailed design.	Page 8
Design Considerations and Constraints	
Provides an overview of the different site constraints that impacted the final design concept of the parking lot retrofit.	Page 9
Detailed Design	
Provides an overview of the design elements and the coordination efforts between the design team and project partners.	Page 11
Construction and Commissioning – General Issues	
Describes the success and challenges of the construction process including lessons learned.	Page 22
Construction and Commissioning – LID Specific	
Describes the success and challenges of the construction process relative to the LID practices and the lessons learned.	Page 23
Economic (Capital & O&M Costs)	
Provides a breakdown of the capital and O&M costs for the project.	Page 25
Operation and Maintenance	
Provides an overview of the general and LID specific maintenance tasks associated with the project.	Page 26
Infrastructure Performance and Risk Assessment	
Summarizes the scope of the proposed performance monitoring program and the knowledge gaps it intended to fulfill.	Page 28
	- age 20

Proud Partners

Environnement Canada

Any Questions?