Soil Bioengineering Applications for Stream Bank Erosion Protection, Fish and Wildlife Habitat Creation

Pierre Raymond, March 2012

Presentation Outline

Background and Introduction

- Terra Erosion Control's background
- What is Soil Bioengineering
- Benefits of Soil Bioengineering
- History and development throughout the world
- Site assessment of stream bank
- Description of techniques, soil amendment and specialized equipment

Stream Bank Protection and Riparian Enhancement

- City of Edmonton, protection of storm water outfalls # 101, 56 and 13, enhancement of fish habitat using vegetated riprap and L.W.D.
- Environmentally sensitive approach to minimize footprint on construction sites
- Teck Metals, Trail, BC vegetated riprap application, Columbia River
- European examples of stream bank protection

2

- Presentation Outline

Background on Terra Erosion Control Ltd.

- A Bonded Environmental Services Company
- Biotechnical slope stabilization / soil bioengineering.
- Training, consulting and project implementation.
- Control of accelerated erosion while re-establishing native vegetation and restoring surface hydrology.

"We are dedicated to the principles of sustainable land use and restoration of natural ecosystems"

Control Ltd.

What is Soil Bioengineering?

- Use of live vegetation for soil erosion control and reduction of sediment delivery and habitat enhancement.
- Use of native shrub and tree species that have the ability to grow roots and shoots from dormant live cuttings.
- Often combined with conventional engineering structures such as rock, geogrids and large woody debris.

- Presentation Outline

Benefits of Soil Bioengineering

- More natural and aesthetically pleasing than other conventional erosion control treatments.
- Provides habitat for fish and wildlife by creating shade, cover and small organic debris input when adjacent to a watercourse.

• Can negate or reduce the amount of habitat alteration compensation required by regulators.

Terra Erosion Control Ltd.

- Presentation Outline

Benefits of Soil Bioengineering

- The established vegetation becomes a structural component.
- Flexible and not affected by slight movements from ground settlement, shifting and frost heaves.
- Cost effective in comparison to other conventional engineering methods.
- Can be combined with conventional engineering methods.
- Minimal maintenance required.

- Presentation Outline

History of Soil Bioengineering

Early development occurred in the mountainous areas of Austria and southern Germany

- Developed in response to extensive deforestation
- Financial restrictions of pre-war years (1930's) in Germany and Austria favoured the use of low cost local materials and traditional construction methods

Terra Erosion Control Ltd.

History of Soil Bioengineering

Documented use of techniques in China and Europe at turn of the 20th century.

orly 1900's. Bundling live stems for use and dike repair. Keven Finner

- Presentation Outline

Europe Early 1900's. Cutting and collection of live stems for soil bioengineering. Kevin Finney

(Lisa Lewis, U.S.D.A. 2000)

Harvesting / Processing & Fall Installation (no storage)

Terra Erosion Control Custom Soil Amendment

- Added during planting to promote growth.
- Contains:

- Organic fertilizers
- Sphagnum peat moss and / or humus and / or compost
- Cultured mycorrhizae (ecto & endo)
- Humic complexes (acids)
- Compost tea (replenishment of soil micro-organisms in depleted soil)

- Presentation Outline

Vegetated Riprap Description

- Vegetated riprap incorporates a combination of riprap and native vegetation in the form of live cuttings.
- The cuttings are planted in conjunction with the placement of rock along watercourses.
- Establishment of vegetation will improve fish habitat and provide added bank protection through the development of root mass.
- Provides a softer more natural appearance to the installed rocks.

Storm Water Outfall 56 Vegetated Riprap

Temporary erosion and sedimentation control and riprap toe construction at bottom of bank in river. - Presentation Outline

Storm Water Outfall 56 Vegetated Riprap

Trench excavated into bank behind riprap.

- Presentation Outline

- Presentation Outline

Terra Erosion Control Ltd. Storm Water Outfall 56 Vegetated Riprap

Harvested (2.3 to 3 m) long live cuttings. Cuttings placed in trench with burlap between cuttings and riprap.

Trench is backfilled using adjacent soil. Some soil is also
placed over upper portion of cuttings; the burlap strip
holds this in place.

- Presentation Outline

Storm Water Outfall 13

City of Edmonton Edmonton, Alberta

Conventional Rock Riprap with Root Wads, Sensitive Riparian Area

65

- Presentation Outline

Storm Water Outfall 13

Associated Engineering's design prescribed protection of Outfall 13 for stabilization of Wolf Willow Creek Ravine with traditional rock riprap.

October 2007

- Presentation Outline

Storm Water Outfall 13

Access to the site, 400 m along the North Saskatchewan River.

The existing path layout was revised and carefully constructed using a walking excavator (Spyder Hoe) to minimize cut height and soil disturbances.

November 2008

Control Ltd.

Storm Water Outfall 13

Excess material was transported out of the ravine and construction materials were transported into the ravine using two Komatsu tracked dump trucks.

November 2008

68

Storm Water Outfall 13

Creek dewatering was carried out using two coffer dams constructed with sandbags and filled with clay material. 4" plastic gravity pipes and pumps were used to divert water to a settling pond.

November 2008

Storm Water Outfall 13

Barriers made of straw bales and silt fencing were used as a sediment trap to the North Saskatchewan River.

November 2008

- Presentation Outline

Riverbank Restoration Project (Riverbank Sections)

Teck Cominco Metals Ltd. Trail, British Columbia

was a collaboration between AMEC Earth Environmental and Terra Erosion Control.

75

Riverbank Restoration Project Section 1 Vegetated Riprap

Riprap toe apron constructed at base of the bank to support the riprap placed on the bank above.

- Presentation Outline

Spring 2006

Control Ltd.

Section 1 Vegetated Riprap

First "lift" of riprap placed above toe apron.

Note riprap placed over gravel filter layer spread on bank.

- Presentation Outline

Spring 2006

Section 1 Vegetated Riprap

Checking elevation of riprap before placing 3rd row of pockets.

- Presentation Outline

Terra Erosion Control Ltd.

Section 1 Vegetated Riprap

After all 4 rows of pockets were installed on the bank, a trench was excavated behind the riprap next to the road.

- Presentation Outline

Spring

2006

80

Section 1 Vegetated Riprap

Long (2.3 m) live cuttings laid out along trench.

Tips protrude above riprap.

- Presentation Outline

Spring 2006

<image><section-header><section-header>

September 15, 2010

