## TRIECA 2019 CONFERENCE

#### Thank you to our sponsors: www.trieca.com **GOLD SPONSORS** O AECOM Credit Valley Conservation Stantec armtec AQUATECH spired by nature Water Management Solutions CANADACULVERT Hydro S terrafix CROZIER JNILOCK **FEM** ONSULTING ENGINEERS Profile Lake Simcoe Region conservation authority York Region CONSTRUCTION Solutions for your Environm 1 antina da 2 HOSTS MEDIA SPONSORS PRINT SPONSOR WATER Environmental WARREN'S **Toronto and Region** Science CAN+IE CANADA onservation Engineering WATERLESS PRINTING INC. Authority

# Accounting for Carbon in Stormwater Management: The Carbon Storm Model and Potential Applications



**Carbon Storm Inc.** 



Urban landscapes and embedded stormwater management systems have ecological benefits and costs









Carbon footprint of urban landscapes and stormwater management systems: potential questions of interest

- 1. Do "green" stormwater infrastructure provide carbon benefit over "gray"?
- 2. Can "green" stormwater infrastructure can be considered "carbon neutral?"
- 3. How large is the contribution of maintenance to overall carbon footprint?

## What is Carbon Storm?

Tool with which to calculate the **carbon footprint** of urban landscape features and stormwater management practices

Developed with partners at North Carolina State University

- LeShawn Fernando, Carbon Storm Inc. founder
- Bill Hunt, Biological & Agricultural Engineering department



## Presentation objectives

- 1. Provide overview of the Carbon Storm model
- 2. Compare carbon footprint of stormwater management systems and life cycle phases
- 3. Demonstrate potential uses of the model

### **C** Footprint = Embodied C + Construction + (Maintenance – Sequestration) x time



Objective 1: model data sources

Life-cycle of urban landscape & SCMs: Embodied carbon of materials

## kg CO<sub>2-eq</sub> kg<sup>-1</sup> material



## Product

Data sources: Life Cycle Analysis Database (NREL); Inventory of Carbon and Energy Database (Jones and Hammond 2011); Ecoinvent Database (Swiss Centre for Life Cycle Inventories); individual studies

Objective 1: model data sources

# Life-cycle of urban landscape & SCMs: Construction & maintenance emissions

### On-road vehicle travel

- EPA MOBILE6.3
- C<sub>emission</sub> = fuel economy x C<sub>fuel</sub>
- kg CO<sub>2-eq</sub> km<sup>-1</sup>

### Off-road equipment operation

- EPA NONROAD model
- $C_{emission} = BSFC \times hp_{avg} \times Load Factor \times C_{fuel} \times p_{fuel}$
- kg CO<sub>2-eq</sub> hr<sup>-1</sup>



### Pond construction (photo credit NCSU BAE)

Objective 1: model data sources

## Life-cycle of urban landscape & SCMs: Vegetative carbon sequestration

| Vegetation type             | Sequestration rate<br>(g C m <sup>-2</sup> )                   |
|-----------------------------|----------------------------------------------------------------|
| Trees (hardwood, softwood)  | $0.4t^{1.82}$ (hardwood)<br>$0.16t^2 - 0.46t + 2.2$ (softwood) |
| Wood Mulch (decomposition)  | $1.5\ln(t) + 1.1$                                              |
| Grass                       | 50t (fully watered)<br>28t (water limited)                     |
| Herbaceous – wetland (CSWs, | 100 <i>t</i> (Humid climates)                                  |
| littoral pond fringe)       | 150t (Continental climates)                                    |
| Sedums (green roof)         | <b>190</b> <i>t</i> for t < 2 yrs                              |

### Objective 1: model overview

|                                |                                                                                                                                                                                                                                                                                                     | Carbon Storm                                                        |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                                |                                                                                                                                                                                                                                                                                                     | User Name:                                                          |
| Carbon Storm                   | Landscapes                                                                                                                                                                                                                                                                                          |                                                                     |
| Green Roof<br>New Run          | Edit                                                                                                                                                                                                                                                                                                |                                                                     |
| Previous Runs<br>wetland+swale | Add a new landscape<br>To add a new landscape, please choose t                                                                                                                                                                                                                                      | the type, enter a unique Landscape-tag, and click the 'add' button. |
| Pave+Veg                       | Landscape Type      Permeable Pavement      Permeable Pavement      Standard Pavement      Bioretention      Planter Bed Trees      Wetpond Wetland      Conveyances      Sand Filter      Level Spreader Vegetated Filter S      Green Roof      Rain Water Harvesting System      Landscaped Area | ✓    parking lot site    Add      Strips                            |

#### New Run

#### Previous Runs

wetland+swale

#### Pave+Veg

avervey

#### Part 1: Pavement Type

Pervious Concrete 🔻

Edit

#### Part 2: Design Parameters

| Parameter                | Value | Unit           |
|--------------------------|-------|----------------|
| Pavement Area            | 10000 | m <sup>2</sup> |
| Gravel Bedding Thickness | 20.0  | cm             |
| Vold Area Percentage     | 20.0  | %              |
| Maintenance Period       | 20.0  | yrs            |
| Concrete Thicknesss      | 0.1   | m              |

#### Part 3: Construction Transportation

#### 1: Construction material transport

| Material Type     | Vehicle Type          | Сав Туре | Round Trip Distance to Site | Distance Unit |
|-------------------|-----------------------|----------|-----------------------------|---------------|
| gravel            | dump truck, 12 yd: 🔻  | diesel 🔻 | 100                         | km            |
| Pervious Concrete | concrete mixing tru 🔻 | diesel 🔻 | 100                         | km            |

2: Construction equipment transport

| Vehicle Type         | Number of Trips | Gaa Туре | Round Trip Distance to Site | Distance Unit |
|----------------------|-----------------|----------|-----------------------------|---------------|
| semi tractor trailer | 2.0             | diesel 🔻 | 100                         | km            |

#### Part 4: Construction Site Preparation

| Activity           | Equipment Type        |
|--------------------|-----------------------|
| excavate and level | grader, 120 hp 🔻      |
| gravel placement   | excavator, 120 hp 🔻   |
| compact subbase    | roller, 120 hp 🔻      |
| concrete placement | concrete mixing tru 🔻 |

#### Part 5: Maintenance

#### 1: street sweeping

| Vehicle Type           | Frequency (times per year) | Round Trip Distance to Site | Distance Unit               |               |
|------------------------|----------------------------|-----------------------------|-----------------------------|---------------|
| street sweeper 🛛 🔻     | 12.0                       | 10                          | km                          |               |
| 2: routine maintenance |                            |                             |                             |               |
| Vehicle Type           | Frequency (times per year) | Gaa Туре                    | Round Trip Distance to Site | Distance Unit |
| pick-up truck, clas: V | 6.0                        | diesel 🔻                    | 10                          | km            |



Edit

#### Part 1: Design Parameters

Pave+Veg

New Run

Previous Runs

| Parameter                | value  | Unit |
|--------------------------|--------|------|
| Grass Sod Area           | 1000.0 | m2   |
| Grass Seeded Area        | 0.0    | m2   |
| Maintenance Period       | 20.0   | yrs  |
| Trees/Shrubs             | Yes 🔻  |      |
| Hardwood Trees Number    | 100.0  |      |
| Softwood Trees Number    | 100.0  |      |
| Shrubs Number            | 100.0  |      |
| Mechanical Tree Planting | No     |      |

#### Part 2: Construction Transportation

#### 1: Construction material transport

| Material Type | Vehicle Type                        | Gas Type | Round Trip Distance to Site | Distance Unit |
|---------------|-------------------------------------|----------|-----------------------------|---------------|
| grass sod     | semi tractor trailer, class hdv8ε ▼ | diesel 🔻 | 20.0                        | km            |
| grass seed    | pick-up truck, class hdv4           | diesel 🔻 | 0.0                         | km            |
| trees shrubs  | pick-up truck, class hdv4           | diesel 🔻 | 20.0                        | km            |

2: Construction equipment transport

| Number of Trips | Vehicle Type                        | Gas Type | Round Trip Distance to Site | Distance Unit |
|-----------------|-------------------------------------|----------|-----------------------------|---------------|
| 2.0             | semi tractor trailer, class hdv8ε ▼ | diesel 🔻 | 20.0                        | km            |

#### Part 3: Maintenance

| Activity                   | Vehicle Type                            | Frequency (times per year) | Round Trip Distance to Site | Distance Unit |
|----------------------------|-----------------------------------------|----------------------------|-----------------------------|---------------|
| Crew Transport             | pick-up truck, class hdv4               | 12.0                       | 10.0                        | km            |
| Mowing                     | mower, commercial/residential, <b>V</b> | 12.0                       |                             |               |
| Irrigation (potable water) |                                         | 20.0                       |                             |               |
| Fertilization              |                                         | 1.0                        |                             |               |
| Tree Pruning               |                                         | 0.2                        |                             |               |

#### Part 4: Sequestration Parameters

| Grass Type       | Quantity | Unit |
|------------------|----------|------|
| Turf Irrigated   | 100.0    | %    |
| Turf Unirrigated | 0.0      | %    |
| Grass Native     | 0.0      | %    |



Edit Delete

#### New Run

Previous Runs

wetland+swale

Pave+Veg

permeable lot + trees

#### **Carbon Footprint Results**

View

| Category                       | Carbon Footprint | Unit        |
|--------------------------------|------------------|-------------|
| Materials Embodied Carbon      | 58278            | kg          |
| Construction Generated Carbon  | 14960            | kg          |
| Maintenance Generated Carbon   | 520              | kg per year |
| Sequestration Generated Carbon | -889             | kg per year |
| Maintenance Period             | 20               | year        |
| Carbon Emission                | 83631            | kg          |
| Carbon Sequestered             | -17778           | kg          |
| Carbon Footprint               | 65853            | kg          |



Carbon footprint of urban landscapes and stormwater management systems: potential questions of interest

- How does the initial carbon footprint (embodied + construction 1. carbon) compare across SCMs?
- Can SCMs be considered "carbon neutral" through time? 2

| Green Infrastructure | Conventional      |
|----------------------|-------------------|
| Bioretention         | Sand filter       |
| Permeable pavement   | Standard asphalt, |
| Constructed wetland  | Stormwater pond   |
|                      |                   |

Grass swale

Green roofs

Grass filter strips

Rainwater harvesting & reuse Potable water use Concrete pipes and channels

asphalt, concrete

# How does the initial C footprint compare among stormwater control measures?



# What is the influence of maintenance and carbon sequestration on C footprints through time?



What is the influence of maintenance and carbon sequestration on C footprints through time?



# How do "green" versus "gray" stormwater conveyances compare?



# Carbon Storm: Possible Applications



**Carbon Storm Inc.** 



## Background

- NCDOT
- Carbon footprint of Stormwater Control Measures (SCM)
- C can be considered in selection of SCM measures
- NCDOT is using it create
  a carbon bank





## Carbon Storm

- Carbon Footprint
  - Carbon used to manufacture, deliver, install and maintain SCM
  - SCMs include landscaping and so the model also accounts for carbon sequestration in vegetation
- Scaled from site to municipality
- Examples





## Municipal

- Carbon Footprint
- Focus on GHG emissions
- Carbon Storm lets you look at lots of other things
  - Landscape Maintenance
  - Stormwater Management Policy (Grey or Green)
  - C sequestration (e.g., Arbor Day, policy on street trees)
  - Carbon credits and banking





## Developers

- Help select stormwater management strategy for subdivision
  - More land for development = \$
  - More land for C sequestration
  - Marketing Opportunity
    = \$





## Site Planners



- Evolv 1 in Waterloo
- Green Building Council: 1<sup>st</sup> Zero C Building in Canada
- Green Building Council looks at building but not site
- Carbon Storm can be applied to the site
- Zero carbon site or possibly carbon credits



## Summary

- NCDOT wanted to look at carbon footprint of SCM
- Carbon Storm can be used in many ways
  - Municipalities
  - Developers
  - Site Planners
- Others?

**Carbon Storm Inc.** 

Carbon Taxes/Carbon Credits?





# Thank you!

Trisha Moore, PhD Assistant Professor Biological and Agricultural Engineering Kansas State University, 0039 Seaton Hall Manhattan, KS 66506 Email: flcmoore@ksu.edu Tel.: 785.532.2911

Brad Fairley, MES Director 5 Smooth Stones Restoration Inc. 227 Black Maple Court Kitchener, ON N2P 2W8 Email: <u>brad.fairley@fivessr.com</u> Tel.: 519.591.4200

## TRIECA 2019 CONFERENCE

#### Thank you to our sponsors: www.trieca.com **GOLD SPONSORS** O AECOM Credit Valley Conservation Stantec armtec AQUATECH spired by nature Water Management Solutions CANADACULVERT Hydro S terrafix CROZIER JNILOCK **FEM** ONSULTING ENGINEERS Profile Lake Simcoe Region conservation authority York Region CONSTRUCTION Solutions for your Environm 1 antina da 2 HOSTS MEDIA SPONSORS PRINT SPONSOR WATER Environmental WARREN'S **Toronto and Region** Science CAN+IE CANADA onservation Engineering WATERLESS PRINTING INC. Authority