TRIECA 2019 CONFERENCE

Thank you to our sponsors: www.trieca.com **GOLD SPONSORS** O AECOM Credit Valley Conservation armtec Stantec AQUATECH spired by nature Water Management Solutions CANADACULVERT Hydro S terrafix CROZIER JNILOCK ONSULTING ENGINEERS Profile Lake Simcoe Region conservation authority York Region CONSTRUCTION Solutions for your Environ t antina da d HOSTS **MEDIA SPONSORS** PRINT SPONSOR WATER Environmental WARREN'S **Toronto and Region** Science CANADA CAN+IF onservation Engineering WATERLESS PRINTING INC. Authority

Risk and Return on Investment Tool (RROIT)

By Sakshi Saini Water Resources Specialist Credit Valley Conservation

Outline

- Current Challenges in Stormwater Management
- Federal and Provincial Recommendation and Requirements
- Risk and Return on Investment Tool
 - Objective and Tool Components
 - Technical Approach Overview
 - Tool Outputs

Current Challenges in Stormwater Management in Existing Urban Areas

Varying Level of Service within Existing Urban Areas– How do we set targets, what's feasible, what's reasonable?

City of Mississauga

25% receives quantity control17% receives quality and quantitycontrol

Town of Caledon

54% of Bolton settlement area receives quantity control 64% of ponds provide water quality and quantity control

Types of Flooding

Riverine Flooding (surface)

Urban Flooding (overland)

Sanitary/Storm Sewer Backup

Source: Boston Water and Sewer Commission

Flooding isn't just stormwater pipes- there are municipal and community risks that need to be considered

News / GTA

Mississauga resident living in tent since flood

Ken Hills, 60, is one of hundreds living near Cooksville Creek displaced since last week's

ALEX NINO GHECIU / TORONTO STAR Order this photo

Evacuation Plans do not consider flooding

Critical Infrastructure failure poses potential threat to public

Community and municipal service needs

Water Quality Impacts of Flooding

Integrating Social Vulnerability into Risk Assessment and Decision Making

High Risk

Low Risk

Risk map based on population vulnerability

Striking the Right Balance of Management Options

Land Acquisition along the floodplain

Top: Enhanced emergency outreach to address public health burden Bottom: Sanitary backup prevention

Green Infrastructure to reduce urban flooding

Recommendations and Requirements

Key recommendations from the Natural Resources Canada State of Play Report (2017)

- Development of ... Financial tools, in partnership with Provinces and Territories that include processes to enable the integration of climate change adaptation considerations into infrastructure decision making, design and maintenance.
- Enhancement of risk-based prioritization tools to evaluate and prioritize infrastructure needs, to include consideration of social vulnerabilities.
- Development of standards to perform forensic accounting of extreme events in an effort to build a database that includes financial and service risks and costs.

Growth Plan for Greater Golden Horseshoe (2016)

- Reference to using vulnerability assessments to mitigate the risk associated with climate change
- Watershed studies to inform water, wastewater and stormwater master plans

Disaster Mitigation Action Funding (DMAF) Guidelines

- Require climate change risk assessment and return on investment for best management practices
- DMAF guidelines require:
 - Mitigation of economic, environmental, social impacts of Climate Change
 - Assessment of loss of lives; displaced/injured/ill population; local economic loss; population without essential services such as water supply, energy supply
 - Demonstration of mitigation measures that will reduce impact on Critical Infrastructure (CI); reduce amount of CI at high risk; reduce Health and Safety impacts; reduce cost of recovery and replacement; reduce impacts on Vulnerable regions

National Disaster Mitigation Program (NDMP) Stream 3

 Flood Mitigation Plans should consider climate change and should identify high risk areas (with consideration for municipal services and social vulnerability)

Risk and Return On Investment Tool

Objective

- Assess baseline flood & erosion risks associated with extreme rainfall events, and quantify the potential damages to private and public infrastructure, and vulnerable populations under current and future climate
- Evaluate and compare risk-reduction achievable by management options (e.g. grey and green stormwater infrastructure, land acquisition, flood proofing etc.)
- Perform a financial assessment of the return on investment associated with each or combination of management options by comparing life cycle costs to the benefits (i.e.: cost savings) achieved by reducing flood risk under various climate change scenarios
- Identification of high risk areas that considers social, health, infrastructure and environmental vulnerabilities.

RROIT Scope

* Version 2.0

Direct Damages

- Direct Damages are those that occur immediately and can be directly attributed to the flood inundation. They include damage to both public infrastructure and private property (Natural Resources Canada, Public Safety Canada, 2017)
- Physical damage to infrastructure that results in repair or replacement
- RROIT has default unit costs for damage to roadways, railway track, buried utilities, buried pipes, and stream restoration

Indirect Damages

- Indirect damages occur as a result of direct flood impacts but they are also more difficult to quantify. They include reduced economic activity and individual financial hardship, and encompass disruptive impacts, including lost trading time and loss of market demand for products (Natural Resources Canada, Public Safety Canada, 2017)
- RROIT contains relationships built using CatIQ database for Residential Displacement, Loss of Business, Vehicle Damage
- Additional waste management cost is considered as a percentage of Direct Damage Cost

RROIT Inputs

Inputs & Damages	Required	Optional
Digital Elevation Model (DEM)		x
Buildings (categorized into public and vulnerable buildings)	x	
Elevations of buildings where surveyed		x
Stream Network	x	
Road network and classification		x
Floodlines	х	
HEC-RAS files	x	
Stormwater model junctions and subcatchment		х
Overland flood areas		x
Sanitary backup areas	x	
Flood complaints/incidences		x
Surficial geology	x	
Population Demographics	x	
Social Vulnerability mapping	x	
Railway tracks		х
Telecommunication lines		x
Drinking watermain network		х
Drinking water pumping stations		x
Drinking Water Treatment Plant		x
Wastewater pumping station		x
Wastewater collectors (sewer network)		x
Waste Water Treatment Plant		x
Stormwater Sewers		x
Power infrastructure (buried hydro lines)		x
Buried gas lines		x

Tool Outputs

Highlighting all Infrastructure at risk of damage due to Riverine Flooding

Buildings at risk of Groundwater Flooding due to high water levels in River-connected Alluvial Aquifer

Buried Infrastructure at risk of exposure and damage due to Stream Erosion

Infrastructure at risk of damage from Urban Overland Flooding and Storm Sewer Backup

Buildings at risk of Sanitary Sewer Backup Flooding

Future Climate Change - Projections

• Existing 25 yr Urban Flooding • Future 25 yr Urban Flooding

RROIT Output – Impact of Flooding under different management scenarios

Management options damage comparison

Storm profile

RROIT Output - Priority Flood Risk Mapping

RROIT Output – Integrating Social impacts in Risk Assessment and Decision Making

The map above shows the health burden as a result of flooding and prioritizes socially vulnerable areas. The health impacts are determined for census dissemination areas as a function of depth and velocity of the flood event that can potentially result in death and injury.

DALY=Disability Adjusted Life Years is a metric of public health burden designed to capture both fatal and non-fatal outcomes, by expressing non-fatal outcomes in terms of partial years of life "lost" to disability.

RROIT Output – Financial Metrics

Metric	Baseline Climate	Future Climate		Integrating Damages from different return period storms
Potential Annual Damages (baseline)	\$20.8 million	\$49.8 million	←	Total Annual Damages for baseline
Potential Annual Damages (SWM ponds)	\$13.5 million	\$33.2 million	<	Reduced Total Annual Damages with SWM ponds
Total Management Expenditure	\$ 85.8 million		<	Total Lifecycle Costs for SWMPs including Capital costs and O&M
Net Present Value *Damaged Averted	\$69.4 million	\$261 million	<	* Should be a positive value
Internal Rate of Return	10.6%	30.0%	←	<pre>IRR = Interest rate to result in NPV * Should be > 3%</pre>
Payback Period	13.3 years	7.6 years	←───	PP = # of years until investment cost is covered through cash flows generated

RROIT Output: Return on Investment for different management scenarios

Management Option	Historical Climate	Future Climate (2040)
SWM Ponds + Land Acquisition	6.2%	18.8%
SWM Ponds + Land Acquisition + 20% uniform uptake of LID	5.4%	18.1%
SWM Ponds + Land Acquisition + 10% uptake by Industrial and Commercial*	5.8%	18.4%
SWM Ponds + Land Acquisition + Targeted Flood-prone residential areas	7.7%	21.1%

Technical Review Team

Roger Phillips	Aquafor Beech Ltd.	Farshad Salehzadeh Region of Peel - Water and	
Laura Twidle	Catastrophe Indices and		ure Planning
Quantification Inc.		Imran Motala Wastewater Infrastruct	Region of Peel - Water and
Bert Van Duin	City of Calgary		
Chris Tse	City of Calgary	Louise Aubin Health	Region of Peel – Public
Deighen Blakely	City of Calgary	Mark Knuckle	Region of Peel
Michal Ubar	City of Calgary	Syeda Banuri	Region of Peel –
Michael Chau	City of Calgary	Transportation and Public Works	
Greg Frew	City of Mississauga	Adam Irawan	Risk Sciences International
Muneef Ahmad	City of Mississauga	Todd Ruthman	Risk Sciences International
Amanjot Singh	Credit Valley Conservation	Imtiaz Shah	Upper Thames River
Christine Zimmer	Credit Valley Conservation	Conservation Authority	
Gayle SooChan	Credit Valley Conservation	Hugh Whiteley	University of Guelph
Tim Mereu	Credit Valley Conservation	Ed McBean	University of Guelph

inspired by nature

TRIECA 2019 CONFERENCE

Thank you to our sponsors: www.trieca.com **GOLD SPONSORS** O AECOM Credit Valley Conservation armtec Stantec AQUATECH spired by nature Water Management Solutions CANADACULVERT Hydro S terrafix CROZIER JNILOCK ONSULTING ENGINEERS Profile Lake Simcoe Region conservation authority York Region CONSTRUCTION Solutions for your Environ t antina da d HOSTS **MEDIA SPONSORS** PRINT SPONSOR WATER Environmental WARREN'S **Toronto and Region** Science CANADA CAN+IF onservation Engineering WATERLESS PRINTING INC. Authority