TRIECA 2019 CONFERENCE

Thank you to our sponsors: www.trieca.com **GOLD SPONSORS** O AECOM Credit Valley Conservation Stantec armtec AQUATECH spired by nature Water Management Solutions CANADACULVERT Hydro S terrafix CROZIER JNILOCK FEM ONSULTING ENGINEERS Profile Lake Simcoe Region conservation authority York Region CONSTRUCTION Solutions for your Environm 1 antina da 2 HOSTS MEDIA SPONSORS PRINT SPONSOR WATER Environmental WARREN'S **Toronto and Region** Science CAN+IE CANADA onservation Engineering WATERLESS PRINTING INC. Authority

Equitable Responsibility for Transformative Design: A Watershed-scale Model for Stormwater Management and Risk Mitigation

> TRIECA March 20th, 2019

Ben Longstaff, Rachel Prudhomme, Dustin Bambic & Tracy Patterson

York Region AURORA East Gwillimbury Sustainable Technologies

ntario

Credit Valley

Overview

- Introduction: Ben
 - Why study needed, objectives and background
- Methods: Dustin
 - Modeling approach, life-cycle cost, preliminary results

- Municipal perspective: Rachel

Why municipalities should care, operational benefits, wrap up

Initial research question

What is the root cause of the growing SWM infrastructure deficit, its attendant challenges and limited, ad hoc use of Green Infrastructure (GI)?

Research findings

- Municipal boundary, public land based stormwater planning & management
- Capital project, end-of-pipe focused SWM ponds
- Primarily ad hoc approach to Green
 Infrastructure / Low Impact Development
- After-the-fact mitigation a significant driver of stormwater planning
- Full cost accounting rare
- Lack of integrated, system level economic & optimization analysis.

What's needed?

A PARADIGM SHIFT IN SWM

- 1. Watershed-based the natural hydrologic unit
 - Equitable responsibility: individual to shared municipal approach.
- 2. Integrated optimization and economic analyses.
 - Apply scale, aggregation and integration to realize economies.

Study objectives

- Use processed-based decision modelling to evaluate the potential of an integrated, systems-based approach to SWM infrastructure.
- Determine the operational implications (e.g., policy, programming, finance, etc.) of an integrated or systems-based approach to municipal SWM.

 Develop the tools (methodology and enhanced opendomain model) and guidance for future SWM applications.

Study Area – East Holland River

- Peri-urban
- Growth and intensification
- Five municipalities
- Municipal Boundary ≠
 Watershed Boundary
- Goldilocks not too big, not too small!

Project stages

Modelling System Overview Dustin Bambic, PH

Modelling System for East Holland Subwatershed Study

Input

- Climate / Rain
- Land Use / Soils
- Slope / Imperviousness
- Impoundments
- Point sources / takes
- And much more

Output

 Continuous simulation time series of flow & contaminants for each land use, subwatershed and waterbody

SUSTAIN Future State

 Time series after implementation of optimized action plan

- Process-based
- Open source

- USEPA-developed
- Unlimited scale

- Peer-reviewed
- Applied internationally

Example Modelling System Output: Hydrograph Remediation

15.

Modelling Process

Current State Model: Key Model Building Blocks

- Planning Units
- Define Watershed Routing

Hydrologic Response Units:

- Response of land to climate
- Primary hydrological and chemical parameters

Model Stream Segments:

- Define channel geometry for routing
 - Instream and bank erosion processes

Current State: Subcatchments

- 315 model subcatchments
- 14 distinct receiving waters
- About 16% area is controlled by ponds

Subcatchment Type	Count	Area (sq. km.)
Ponded	188	37.8
Unponded	127	201.1
Total	315	238.9

East Holland River

Weslie Creek

enshoe/Bo

Queensvill Drain

Holland Landing

Holborne

anner

Current State: Model Stream Segments

- Advanced GIS processing to leverage DEM to calculate elevations along stream centerlines
- Detailed cross sections will improve modelled velocities (sediment) and waters surface elevations (flooding)

Current State: Hydrologic Response Units

95 unique combinations of land cover, soils, slope, and geology.

Current State: Impervious Areas

Current State: Configuration over Calibration

- Precalibration outputs!
- Hot off the presses
- Detailed
 configuration
 reduces the
 'burden' on
 calibration

Aggregated Monthly (10/01/2015 - 09/30/2018)

Future State: Establish Management Action Menu

- Each menu item has: defined opportunity areas, typical design details and unit cost functions!

Future State: Cost Optimization

Millions of possible strategies analysed

Cost Function Analysis

- Leveraging and updating STEP LID Costing Tool to generate a variety of cost functions

Optimize Across a Range of Action Levels

Subwatershed Management Level % Load Reduction Total Capacity (1000 m3) Subwatershed ID 1002 20% 6.0 1003 19% 8.0 1004 54% 17.3 1005 18% 17.9 1006 18% 3.5 1007 18% 16.8 1008 64% 10.0 1009 11.5 19% 1010 19% 6.1 1011 27.6 18% 1012 21% 10.4 1013 0.2 19% 1014 19% 7.0 1015 18% 98.0 1016 25.3 18% 1017 48% 18.8 1018 18% 39.6 1019 18% 83.8 1020 18% 91.7 1021 18% 15.6 520.0 Total 32%

23

Selected Solution

Lake Simcoe Region Conservation Authority

Range of Action Levels Across Watershed

Detailed Strategy for each Subcatchment

And costs!

Example from LA Region

Sub- watershed ID	Watershed Management Metrics			Management Actions to Achieve Reduction (1000 m ³ capacity)							
			s þé	Existing/Planned			Optimized			D al	
	% Load Reductior	Annual Volu Managed (1000 m3	Imperviou: Area Treate (acres)	Existing Projects	Future Redevelop	Centralized Facilities	Wetlands	Green Streets	<u>Other</u> Gl Projects	Other Centi Projects (TE	Total RMF
1002	20%	63.64	110.25	0.36	0.19	1.93	0.16	2.53	0.11	0.75	
1003	19%	145.24	107.87	0.65	2.12	0.45	3.04	1.02	0.46	0.29	
1004	54%	199.30	163.61	0.50	16.82						
1005	18%	281.20	190.90	2.84	7.53		0.22	7.11	0.07	0.08	
1006	18%	116.53	68.98	1.39	0.30	0.26	0.80	0.00	0.54	0.16	
1007	18%	380.34	170.74	8.99	2.37	1.19	0.06	3.67	0.56	0.00	
1008	64%	105.77	110.74	1.46	5.00		1.57	2.00			
1009	19%	173.71	134.79	3.16	3.49		0.27	4.61			
1010	19%	118.09	47.71	0.00	0.16			5.85		0.10	
1011	18%	110.62	204.99	8.88	13.95	1.55	3.10	0.11	0.05		
1012	21%	192.01	120.81	0.51	3.49		0.09	6.23	0.00	0.09	
1013	19%	2.52	0.33		0.18	0.01				0.00	
1014	19%	129.91	16.19		0.57			2.60	0.10	3.69	
1015	18%	388.40	272.91	9.15	13.35	33.13	0.51	0.75	0.82	0.30	
1016	18%	202.38	168.65	1.23	5.52	16.66	1.77	0.08			
1017	48%	308.40	236.31	2.69	3.22		2.16	8.48	1.85	0.44	
1018	18%	583.75	457.05	5.61	16.51		3.41	14.11		0.00	
1019	18%	528.17	576.89	17.87	8.46	1.26	13.40	2.35	0.50	0.00	
1020	18%	306.75	242.20	6.74	10.04	15.99	2.00	6.73	0.09	0.09	
1021	18%	156.45	87.13	0.05	2.51	1.23		5.32	0.74	5.79	
Total	32%	4,493.2	3,489.1	72.1	115.8	73.6	32.6	73.6	5.9	11.8	

Watershed-wide vs Municipal

Tier 1 Optimization

Find optimal combinations of BMPs to achieve range of responses, with each increment being at lowest cost

Tier 2 Optimization

Search across Tier 1 solutions to find the optimal combinations (BMPs and locations) to achieve biggest response at lowest cost

Municipal Perspective Rachel Prudhomme, P.Eng.

WHY SHOULD MUNICIPALITIES CARE?

- Flooding is our biggest climate change risk
- Need to address growth and 1 in impervious surfaces
- Traditional SWM no longer works
- No control over flows from upstream municipalities
- Need a concerted approach to SWM across municipalities (e.g. watershed-wide)
- Makes sense to pool our resources across boundaries

OPERATIONAL BENEFITS

- In urban municipalities, typically more than 70% of land in a municipality is privately owned
- Need proven market-based instruments & costing
- Need to show proven cost efficiency to land owners
- This project is based on reliable data and will provide tools to recommend strategies that will bring the greatest bang for every buck spent (public AND private)

WRAP-UP

- On a path to identify the integrated management actions that provide the greatest cost-benefit for flood control and water quality improvement
- Robust and flexible tool to support a variety of applications including offset programs and stormwater master plans / capital programs
- Will provide <u>first-of-its-kind</u> outputs regarding the economic benefits of jurisdiction vs watershed-wide approaches for stormwater management

ACKNOWLEDGMENTS

TECHNICAL ADVISORY COMMITTEE MEMBERS

LSRCA TRCA CVC MECP YORK REGION TOWN OF NEWMARKET TOWN OF AURORA TOWN OF EAST GWILLIMBURY TOWN OF WITCHURCH-STOUFFVILLE FREEMAN ASSOCIATES LTD. PARADIGM ENVIRONMENTAL FORTIN ECONOMICS **BARRY HASLER**

FUNDING PARTNERS

Federation of Canadian Municipalities (FCM) Natural Resources Canada (NRCAN) National Disaster Mitigation Program (NDMP) Lake Simcoe Conservation Foundation **Toronto Region Conservation Authority (TRCA) Credit Valley Conservation (CVC)** Town of Newmarket York Region

> Endorsing Project Partner World Wildlife Fund Canada

TRIECA 2019 CONFERENCE

Thank you to our sponsors: www.trieca.com **GOLD SPONSORS** O AECOM Credit Valley Conservation Stantec armtec AQUATECH spired by nature Water Management Solutions CANADACULVERT Hydro S terrafix CROZIER JNILOCK FEM ONSULTING ENGINEERS Profile Lake Simcoe Region conservation authority York Region CONSTRUCTION Solutions for your Environm 1 antina da 2 HOSTS MEDIA SPONSORS PRINT SPONSOR WATER Environmental WARREN'S **Toronto and Region** Science CAN+IE CANADA onservation Engineering WATERLESS PRINTING INC. Authority