TRIECA 2019 CONFERENCE

Thank you to our sponsors: www.trieca.com **GOLD SPONSORS** O AECOM Credit Valley Conservation armtec Stantec AQUATECH spired by nature Water Management Solutions CANADACULVERT Hydro S terrafix CROZIER JNILOCK ONSULTING ENGINEERS Profile Lake Simcoe Region conservation authority York Region CONSTRUCTION Solutions for your Environ t antina da d HOSTS **MEDIA SPONSORS** PRINT SPONSOR WATER Environmental WARREN'S **Toronto and Region** Science CANADA CAN+IF onservation Engineering WATERLESS PRINTING INC. Authority

Design Limitations to Low Impact Development: Observing the Site Conditions that Lead to Stormwater Bypass

TRIECA

21 March 2019

By Alex Fitzgerald and Chantalle Jacob-Okorn

Overview

- Bioretention swales are often designed with an overflow, allowing water to bypass water quality treatment
- Purpose of our presentation is to review factors that lead to overflow, and water quality implication of these events
- Study site is the IMAX head office parking lot in Mississauga, Ontario

Introduction

- Low Impact Development (LID) is an alternative to traditional stormwater management
- Engineered landscape features that infiltrate, filter, and store stormwater runoff
- A major barrier to LID implementation is a lack of performance data

LID Performance Monitoring - IMAX

- In 2013, IMAX redeveloped the parking lot at their head office in Mississauga
- The asphalt -> catchbasin parking lot was transformed to one using a variety of different LID features
- Focus today will be on the three bioretention swales

IMAX Bioretention Swales

- The three swales are designed to treat storm events up to 25 mm
- Water infiltrates through the engineered media to an underdrain below
- An overflow in each cell leads directly to the underdrain (to avoid ponding on the parking lot)

Why do we care about overflow?

- Overflow water isn't treated
- Water quality implications
- May indicate need for maintenance activities

 Understanding conditions that lead to overflow can inform design

Performance Monitoring and Overflow Events

LID Performance Monitoring - IMAX

- CVC's monitoring program includes both water quantity and quality monitoring
- Rain gauge and level logger data used to determine when overflow events occurred

LID Performance Monitoring - IMAX

- Level loggers used to measure height of water ponding on swales (to determine if overflow occurs)
- Monitored from 2014 to 2017, logger removed during the winter to avoid freezing

(Picture credit: TRCA/STEP)

Parameters that may contribute to overflow

- **1. Design Considerations**
- 2. Precipitation Depth
- **3. Precipitation Intensity**
- 4. Antecedent Soil Conditions
- 5. Event Duration
- 6. Age of the Bioretention Media

IMAX Bioretention Swales

IMAX Bioretention Swales

Site	IX-2	IX-3	IX-4
Ratio of impervious drainage area/ feature area	22:1	22:1	30:1
Number of events	146	156	153
Percent of events with overflow	3%	2%	32%

Precipitation depth(mm) and chance of overflow

	Percentage of Overflow				
Precipitation Depth	IX-2	IX-3	IX-4	All Sites	
Count:	146	156	153	455	
0 to 5 mm	0%	0%	0%	0%	
5 to 10 mm	0%	0%	41%	12%	
10 to 15 mm	0%	0%	64%	16%	
15 to 20 mm	15%	8%	79%	36%	
20 to 25 mm	0%	0%	86%	27%	
25 to 30 mm	17%	13%	83%	35%	
>30 mm	20%	13%	70%	36%	
Total:	3%	2%	32%	13%	

Legend	0%	1-20%	20-40%	40-60%	60-80%	80-100%
--------	----	-------	--------	--------	--------	---------

Peak intensity(mm/h) and chance of overflow

Peak	Percentage of Overflow				
Precipitation Intensity	IX-2	IX-3	IX-4	All Sites	
Count:	146	156	153	455	
0-5 mm/h	0%	0%	0%	0%	
5-10 mm/h	2%	0%	5%	2%	
10-20 mm/h	3%	0%	48%	16%	
20-30 mm/h	5%	0%	94%	32%	
30-40 mm/h	0%	0%	100%	33%	
40-50 mm/h	25%	33%	100%	54%	
> 50 mm/hr	0%	0%	100%	33%	
Total:	3%	2%	32%	13%	

Data is from 2014 to 2017, excluding winter.

Legend 0% 1-20% 20-40% 40-60% 60-80% 80-100%

Average precipitation intensity (mm/h) and chance of overflow

Δverage	Percentage of Overflow				
Precipitation Intensity	IX-2	IX-3	IX-4	All Sites	
Count:	146	156	153	455	
0-0.5 mm/h	0%	0%	3%	1%	
0.5-1 mm/h	0%	0%	10%	3%	
1-1.5 mm/h	0%	0%	45%	15%	
1.5-2 mm/h	7%	5%	39%	17%	
2-3 mm/h	8%	0%	47%	21%	
3-5 mm/h	5%	7%	59%	24%	
5-10 mm/h	9%	9%	50%	22%	
> 10 mm/hr	0%	0%	80%	25%	
Total:	3%	2%	32%	13%	

Legend	0%	1-20%	20-40%	40-60%	60-80%	80-100%
--------	----	-------	--------	--------	--------	---------

Antecedent conditions and chance of overflow

Antecedent	Percentage of Overflow				
Conditions (Past 3 Days of Rain)	IX-2	IX-3	IX-4	All Sites	
Count:	146	156	153	455	
0 mm	3%	2%	30%	11%	
0-5 mm	2%	2%	32%	13%	
5-10 mm	10%	9%	40%	20%	
10-15 mm	0%	0%	14%	4%	
15-20 mm	0%	0%	50%	19%	
20-25 mm	0%	0%	25%	9%	
25-30 mm	0%	0%	40%	14%	
>30 mm	0%	NA	NA	0%	
Total:	3%	2%	32%	13%	

Legend	0%	1-20%	20-40%	40-60%	60-80%	80-100%
--------	----	-------	--------	--------	--------	---------

Event duration and chance of overflow

	Percentage of Overflow				
Precipitation Duration	IX-2	IX-3	IX-4	All Sites	
Count:	146	156	153	455	
0-5 hours	3%	2%	23%	10%	
5.1-10 hours	0%	0%	31%	10%	
10.1-15 hours	5%	4%	52%	20%	
15.1-20 hours	0%	8%	27%	12%	
20.1-25 hours	17%	0%	80%	24%	
25.1-30 hours	0%	0%	25%	9%	
>30.1 hours	25%	0%	50%	19%	
Total:	3%	2%	32%	13%	

Legend	0%	1-20%	20-40%	40-60%	60-80%	80-100%
--------	----	-------	--------	--------	--------	---------

Frequency of overflow events each year

Precipitation depth (mm) and peak precipitation intensity (mm/h)

IX-2: 2014 to 2017, n = 146

Precipitation depth (mm) and peak precipitation intensity (mm/h)

IX-3: 2014 to 2017, n = 156

Precipitation depth (mm) and peak precipitation intensity (mm/h)

IX-4: 2014 to 2017, n = 153

Water Quality Impacts of Overflow

Water Quality Monitoring

• A weir and level logger are used to measure the water leaving the swales

Water Quality Monitoring

- An autosampler is installed to collect water during a storm event
- Flow-proportioned composite samples are collected after events
- This leads to event-mean concentrations (EMCs)

Water chemistry results – TSS at IX-4

Comparing events of at least 5 mm

IX-4 Chemistry Results

Water chemistry results – IX-4

	Median concentration for non-overflow events	Median concentration for overflow events	Difference
Count	12	17	
Copper (µg/L)	4.55	8.8	↑
lron (μg/L)	111	117	1
Nitrate+Nitrite			
(mg/L)	0.87	0.46	\checkmark
Total Phosphorus			
(mg/L)	0.11	0.13	1
Total Suspended			
Solids (mg/L)	5	11	1
Zinc (µg/L)	8.85	12.2	1

Load reductions

- Water quality impact of LID installations can also be measured as load reduction
 - Combination of volume reduction and concentration changes
- Load reduction- difference between influent and effluent loads (masses)

Load reduction – Overflow vs non-overflow events at IX-4

	Total load reduction for non- overflow events	Total load reduction for overflow events	Difference
Count	104	49	
Copper	87%	64%	\checkmark
Iron	92%	88%	\checkmark
Nitrate+Nitrite	52%	50%	\checkmark
Total Phosphorus	79%	54%	\checkmark
Total Suspended			
Solids	96%	89%	\checkmark
Zinc	95%	87%	\checkmark

- Overflow events lead to a lower load reduction
- For most parameters there still is a load reduction

Seasonal impacts – Winter monitoring

Next Steps - Winter Data Collection

- Interested in how effective these features are at infiltration in the winter
- Soil moisture probes recently installed to help with winter monitoring

Next Steps - Winter Data Collection

Conclusion

Using monitoring data to inform design:

- Ensure the ratio of drainage area to feature area is not too high for the design
- Carefully grade parking lots when directing stormwater to multiple features
- Consider precipitation depth and peak precipitation intensity, instead of average intensity, when designing LID features
- Consider water quality implications of overflow events

Alex.Fitzgerald@cvc.ca

Chantalle-Brittany.Jacob-Okor@cvc.ca

inspired by nature