

2023 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

NEXT STORM

Green Infrastructure and Low Impact Development for Stormwater Management

Civil Engineering

Tamer Almaaitah Darko Joksimovic

OUTLINE

- Introduction
 - Problem statement Motivation Objectives

Methodology

- Systematic literature review - Field monitoring – Data collection and Analysis

Results

- Hydrologic and thermal performance
- Conclusions
- Future research

What is Blue-Green Infastructure?

Shouldn't rain gardens and green roofs be provided as examples of green, rather than blue infrastructure?

DesignLIFES - Design of Living
 Infrastructure for Ecosystem Services
 … train the next generation of engineers, landscape architects and
 scientists in the interdisciplinary
 professional and technical skills they
 will need to design, create and manage

living and green infrastructure for Canadian cities.

https://designlifes.civmin.utoronto.ca/

• Focus on

Toronto

Metropolitan University

- Rooftop and ground-based
- New and emerging technologies
- Climate change adaptation urban runoff and heat
- Internet of Things (IoT)
 "data is the new oil"
- Local sites and facilities

Introduction	Objectives	Methodology	Results	Conclusions	Future research

 Research objectives Green Roof PICP 1. Evaluate of the state-of-the-ai Blue-Green Roof Ground-based 2. Quantify and compare therma Rooftop Climate Change Adaptation monitoring Blue Roof DCFS 3. Assess wireless monitoring a Established **Rooftop Farm** 🛆 Novel

Results

Conclusions

Field Monitoring in Downtown Toronto

Crawford Laneway Road

UofT Gritlab <u>Rooftop Modular</u>

TMU Urban Farm <u>Rooftop Full-Scale</u>

Field Monitoring: Full-Scale and Experimental Setups

Crawford Laneway

<u>Road</u>

Toronto Metropolitan University PICP-DCFS

Field Monitoring: Full-Scale and Experimental Setups

Crawford Laneway

PICP-DCFS

Toronto Metropolitan University

U of T's Gritlab

Rooftop Modular

Extensive GR and BGR

Check Dam BR

Green Roof Vegetation Growing Media Drainage Layer

Blue-Green Roof Vegetation Growing Media LARGER Drainage Layer

<u>Blue Roof</u> Check Dams Orifices

Field Monitoring: Full-Scale and Experimental Setups

Field Monitoring and Laboratory Testing

13

Results of the Systematic Literature Review

- Evidence of urban runoff and heat mitigation by BGI was found
- Most studies focused on one benefit at a time (e.g., hydrologic or thermal)
- Two-thirds of the selected studies were performed on a large urban scale
- A variety of research approaches were followed

Peak Flow (mm/hr)

Permeable Pavers and Dome Concrete Forming System

Hydrologic Performance

Compared to a conventional concrete pavement

	PICP	DCFS
Runoff Volumetric Reduction	33%	85%
Runoff Peak Flow Reduction	43%	89%
Runoff Delay	Moderate	High

Permeable Pavers and Dome Concrete Forming System

Thermal Performance

PICP

Surface Temperature

Near-Surface Air Temperature No distinguishable difference No distinguishable difference

Higher (2.3 °C)

DCFS

Higher (0.8 °C)

Compared to a conventional impervious concrete pavement

Conventional and DCFS 16

Extensive Green, Blue-Green and Blue

Extensive Green, Blue-Green and Blue

Thermal Performance		\$\$¥\$\$¥\$\$	si 18 18 18 18 18 18 18 18 18 18 18 18 18			2.4 mm	4.8 mm
Six		Green FLL	Green Organic	Blue-Green FLL	Blue-Green Organic	Blue Smaller Orifices	Blue Larger Orifices
Experimental Modules	Near-Surface Air Cooling	1.6 °C	2.9 °C	2.8 °C	2.9 °C	2.2 °C	2.2 °C
	Diurnal Air Cooling		Maximum o afte	Maximum cooling in the evening			
	In-substrate Temperature	Higher	Higher	Lower	Lower	-	-

Farmed Intensive Blue-Green Roof

Plot

Retention

Peak

Key Observation

Planting and harvesting

activities impacted the

hydrologic performance

_ _ _ _

Farmed Intensive Blue-Green Roof

Thermal Performance								
Seven Species		Quick Weed	Milkweed	Potato	Squash	Beet	Tobacco	Okra
	Near-Surface Air Cooling	0.5 °C	1.4 °C	1.4 °C	1.4 °C	2.5 °C	2.5 °C	2.5 °C
	Diurnal Air Cooling	Maxim	um Cooling	in the afternc	oon & Warm	ing effect in	the early mo	orning

IoT - wireless sensor monitoring of BGI

IoT - wireless sensor monitoring of BGI

Future Research

- Rooftop farming (+ other BGI)
 - Plant growth and health
 - Terrestrial + remote sensing (performance, O&M)
- Development and testing of other sensors (e.g. water level and flow, machine vision)
- Long-term performance assessment
- Modelling coupled hydrologic and thermal

Acknowledgments

• TMU's Urban Farm Team

• DesignLIFES and Gritlab Team

Toronto Metropolitan University

- Industrial Partners
 - ABT, Inc.
 - Bioroof Systems Inc.
 - Dufferin Construction
 - Pontarolo Engineering Inc.

DesignLIFES

- NSERC CREATE through the DesignLIFES program
- Transportation Services Division at the City of Toronto

List of Publications

- The potential of Blue-Green infrastructure as a climate change adaptation strategy: a systematic literature review
- Impact of design variables on hydrologic and thermal performance of green, blue-green and blue roofs
- Hydrologic and thermal performance of a full-scale farmed blue-green roof
- Hydrologic performance of permeable pavers and a dome concrete forming system: a comparative study
- Real-time IoT-enabled water management for rooftop urban agriculture using commercial off-the-shelf products

2023 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

NEXT STORM