

2023 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

Application of 3D High-resolution Combined DC Resistivity and Induced Polarization (DC-IP) Geoelectrical Imaging to Improve Interpretation of Streambed Heterogeneity and Groundwater-Surface Water Interactions

Kyle Robinson^{1,3}

M.E.Sc. , EIT March 23rd , 2023

Christopher Power¹, Jim Roy^{1,2}, Meghan Vissers¹, Angelos Almpanis¹, Uwe Schneidewind¹, Clare Robinson¹

¹ Department of Civil and Environmental Engineering, Western University

² Water Science and Technology Directorate, Environment Climate Change Canada

³ Matrix Solutions Inc

Environment and Climate Change Canada Environnement et Changement climatique Canada

Overview

- 1. Introduction
- 2. Site Description
- 3. Field Methodology
- 4. Results and Discussion
- 5. Conclusions

1. Introduction

Western S Engineering

Groundwater-Stream Water Interactions

- Maintaining baseflows
- Temperature and oxygen regulation
- Fate and transport of chemicals and nutrients

Western Stern Engineering

Introduction

Groundwater-Stream Water Interactions

- Changing hydraulic head differences
- Spatial variation in sediment hydraulic properties

Western S Engineering

Streambed Heterogeneity

- Sediment surface area
- Porosity
- Permeability

(USEPA, 2008)

Western S Engineering

Introduction

Measurement of GW-SW Spatial Exchange Distribution

Western Strangering

Matrix Solutions Inc. ENVIRONMENT & ENGINEERING

Introduction

Geophysical Techniques

- Bareict Current Resistivity (DC)
- Montevalorization (IP)
- Continuous

DC-IP

- Pore fluid
- Porous media

Fluid-grain interface

Western Stern Engineering

Knowledge/Research Gaps

Gap 1: Standalone DC resistivity has been limited to two-dimensional (2D) surveys

Gap 2: IP technique not previously used to identify streambed sediment composition

Gap 3: Combined DC-IP imaging has not been utilized in both high-resolution and threedimensional (3D) surveys for adequate mapping of streambed architecture

Research Objective

Overall Objective: Evaluate potential of high-resolution 3D DC-IP for characterizing streambed architecture for informed assessment of GW-SW exchanges

- Sub-objective 1: Perform with traditional GW-SW interaction measurement approaches of a stream reach
- Sub-objective 2: Conduct high-resolution 3D DC-IP surveys within a stream reach, and determine whether traditional approaches could validate performance of DC-IP, while evaluating if an integrated approach improves understanding of GW-SW exchanges in a complex environment

2. Site Description

Western S Engineering

Western S Engineering

Site Description

3. Field Measurements

- Groundwater-surface Water Exchange Patterns
 - Temperature differences
 - Vertical Hydraulic Differences
- Streambed Porewater Collection
- DC-IP Imaging
- Streambed Sediment Coring

Spatial Streambed Temperature Mapping

Western Stengineering

Methodology

Western S Engineering

Methodology

Streambed Porewater Collection

Methodology

DC-IP Imaging Data Acquisition

Location	# Lines	Elec. per Line	Electrode Spacing (m)		Area	Arrova	# Meas per	
			Inline	Interline	(m²)	лпау	Line	
						D-D	1194	
Stream	10	240	0.2	0.2	86	M-G	1395	
			an alle			D-D (IP)	931	

Western S Engineering

Soil Coring

Western Stengineering

Methodology

4. Results and Discussion

Western Stern Engineering

Results & Discussion

Spatial Streambed Temperature Mapping

Summer 2020

Western S Engineering

Results & Discussion

rix Solutions Inc.

Spatial Streambed Temperature Mapping

Winter 2020

Western S Engineering

Results & Discussion

ix Solutions Inc.

Spatial Streambed Temperature Mapping Position along stream (m)

Zone 1: 5-12m

Large differences (>4 °C ۲ difference in summer <-1.5 °C difference in winter)

Upwelling

Zone 2: 13-35m

- Small differences (<2.5 °C ۲ difference in summer >0 °C difference in winter)
- Low Upwelling, higher downwelling
- Hyporheic associated upwelling

Zone 3: 36-40m

- Large differences (>4 °C ۲ difference in summer <-1 °C difference in winter)
- Upwelling, moving East

Results & Discussion

Hydraulic differences

x Solutions Inc.

Western S Engineering

Results & Discussion

DC-IP Imaging • Stream Survey – 2D

Western S Engineering

Results & Discussion

Matrix Solutions Inc.

DC-IP Imaging • Stream Survey – 2D

Matrix Solutions Inc.

Upstream

Zone 1: 0-12m

- Highest resistivity
- More permeable gravelly sand materials
- GW upwelling

Zone 2: 13-36m

- Low to moderate resistivity
- Fine grained, non-clayey materials
- Little to no upwelling

Zone 3: 37-48m

- Moderately heterogeneous with higher resistivity on east side
- Permeable gravelly sand materials
- Increased GW upwelling on east side

Western Straineering

Soil Coring

Results & Discussion

Conclusions

- DC-IP have strong potential to assist in the characterization of streambeds and understanding of associated GW-SW exchange patterns in streams
- Geophysical techniques such as DC-IP exhibit strong potential for streambed investigations as they are non-invasive, cost-effective and provide rapid, continuous information on the subsurface
- Value of completing full, continuous 3D imaging was realized to identify centimeter-scale changes
- DC-IP imaging improves characterization of streambed heterogeneity enabling more robust interpretation of GW-SW exchange patterns

Acknowledgements

Ministry of Environment Conservation and Parks

Environment and Climate Change Canada Environnement et Changement climatique Canada

2023 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

