

2023 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

Existing Stormwater Management Facilities

Over 15,000 Municipal Stormwater Management Facilities Over 2/3 Constructed after 1999

ASSESSING THE FUNCTION OF STORMWATER MANAGEMENT FACILITIES IN A CHANGING CLIMATE

Source to Stream Conference | March 2023

Presented by Dr. Kevin Stevens & Amanda Pinto

The Team

The Climate

WINTER Increased average winter temperature

RAINFALL Increased winter runoff

CONTAMINANTS

Increased transport of water-soluble contaminants

INVASIVE

Increased northern limits of invasive species

Reference period: 1971-2000. Climate change scenario: B2 In Colombo et al. (2007); MNR Climate Change Research Report, 2011.

Winter Climate Trends

WINTER DAYS ABOVE ZERO

The Challenges

How well are existing SWM facilities performing?

How are seasonal patterns affecting water quality parameters?

How effective are current monitoring efforts? Can we optimize yearround function of SWM facilities?

The Program

Winter Dynamics of SWM Ponds: KW Region

Vegetation in SWM Ponds and Receiving Waters

SWM Pond Monitoring – Black Creek Halton Region

Winter Tolerance in Three Aquatic Plant Species

Year-round SWM Pond Performance: KW Region

The Goals

Monitor influent/effluent flow in SWM Ponds over one-year period
 Assess year-round removal efficiency under various guidelines
 Evaluate potential ecological impacts in SWM Ponds

The Project

- Wet Ponds
 - Vegetation Survey
 - Hydraulic Monitoring
- Water Quality Sampling

- Influent/Effluent Concentrations
- Removal Efficiency
- Recommendations

The Sites

https://www.waterloo.ca/en/government/resources/Documents/Cityadministration/October-8-open-house-stormwater.pdf

The Sites

DORWOOD

13,000 m³ 70% imperviousness

YARMOUTH

The Field Work

Hydraulic Monitoring

- Water depth: Water level data logger
- Rainfall/Temp: Environment Canada

Water Quality
Sampling

- Daily inflow/ outflow
- TP, DO, CI, pH, TDS, conductivity, ORP, water temp, color, turbidity, TSS

ANALYSES: YSI Professional Plus Multi-parameter Meter, Hach SR3900 Spectrophotometer, Gravimetric: Total Suspended Solids

Total Phosphorous: Inflow and Outflow

Yarmouth: Total Phosphorous (Log10)

Seasonal Trends – Total Phosphorous

Adapted from CCME (2004)

Performance & CCME Guidelines - Total Phosphorous

TROPHIC STATUS	TRIGGER RANGE (µg/L)
Eutrophic	30-100
Hyper- Eutrophic	>100

Adapted from CCME (2004)

Dorwood & Yarmouth Outflow: Total Phosphorous

Dorwood: Chloride Inflow vs Outflow

Performance & CCME Guidelines - Chloride

Daily Effluent Concentration of Chloride

Biotic Effects of Chloride: Acute Exposure

24, 48 & 96 hour tests conducted for acute toxic effects (LC50)⁵

DORWOOD: Acute = 52.87% of the year Highest concentration = 3,113 mg/L

YARMOUTH: Acute = 10.66% of the year Highest concentration = 1,141mg/L

Biotic Effects of Chloride: Chronic Exposure

≥7 day exposure for fish
& invertebrates
≥24 hours for aquatic
plants & algae

DORWOOD: Chronic = 99.45% of the year Highest ≥7 day exposure: ~2,050 mg/L

YARMOUTH: Chronic = 80.60% of the year Highest ≥7 day exposure: 800 mg/L

Seasonal Trends – Dissolved Oxygen

Dissolved Oxygen Effluent Concentration in Stormwater Ponds

- Dorwood Outflow —— Yarmouth Outflow —— Early Life Stages —— Other Life Stages

Performance & CCME Guidelines – Dissolved Oxygen

EXPOSURE

>5.5

>6

Early

Other

Increased Dissolved Oxygen within Ponds

Summary of Results

- Total Phosphorous: removal efficiencies 50:50; frequent release of eutrophic waters (1/3); differences among ponds
- Chloride: mitigating conditions but often exceed levels considered protective of aquatic organisms
- **Oxygen**: levels in Yarmouth from June-Oct often below levels required for protection for aquatic organisms; Dorwood below guidelines in July

Overall Conclusions

- Potential for downstream effects but multiple contributing factors
- Current monitoring and assessment may be insufficient to evaluate biotic effects (chronic exposure requires prolonged conditions)
- Status of SWM ponds sacrificial or not; if not, how should they be populated?

Next Steps

RESEARCH

Salinity Tolerance of Wetland Plants Cold Chamber Field Studies

MONITORING

Year-Round Analysis of Additional SWM Ponds

Underwater Monitoring Systems

EDUCATION

Centre for Urban Watershed Research

PARTNERS

NSERC Private-sector Municipal/ Conservation **High School**

Wilfrid Laurier University Centre for Urban Watershed Research

Contact Us

DR. KEVIN STEVENS Associate Professor kestevens@wlu.ca

AMANDA PINTO, P.ENG. Water Resources Project Manager apinto@cfcrozier.ca

Region of Waterloo

We acknowledge the support of the Region of Waterloo and the Natural Sciences and Engineering Research Council of Canada (NSERC).

2023 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

