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. Fluvial Sediment Entrainment and Processes & Crossing Impacts
. Factors Influencing Sediment Entrainment and Transport

. Sediment Entrainment and Transport Equations

. 2D Hydraulic Model Development

. Hypothetical Crossing Example

. Constraints and Opportunities
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Fluvial Sediment Entrainment and Transport Processes

° Complex inter-relationship Lanes Stream Balance Relationship (1955)

between channel dimensions,
patterns, sediment supply, -
streambed roughness and
steepness

o Alterations to one component
will impact the others

e A channel will remain In
equilibrium if changes in B g S
sediment load and particle size image from: water | Universiy of Kentucky College of Ars & Sciences (uky.cd)
are balanced by changes in
water discharge and slope.
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Crossing and Impacts on Natural Sediment Transport Potential

A crossing should
maintain or replicate the
pre-crossing natural
sediment transport
potential and fish
| passage characteristics
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Crossing and Impacts on Natural Sediment Transport Potential

Profile
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Establishment of a local base level control
point (e.g., closed bottom culvert) that
affects channel bed profile development
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Sediment Entrainment and Transport Influenced by Flow

A A
A‘I

Velocity and Shear Stress — both influence the forces causing
resistance and movement
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Factors Influencing Sediment Entrainment and Transport

j.‘Velocity u

turbutent
eddying

velocity difference
between the top and
bottom of grain creates a
vertical pressure gradient

Fluvial sediment transport — EarthSurface 0.0.1 documentation

 \What is shear stress

Force per unit area acting on a particle (N/m”2)

Erosion occurs when shear stress exceeds resisting
forces

Very difficult to predict
Bank erosion is more complicated than bed erosion

What is velocity
A vector quantity having magnitude and direction (m/s)

Velocity varies with time, discharge, distance from
banks and bed - Velocity and shear stress are not steady
or uniform in natural channels

Roughness — due to friction, varying particles,
bedforms, and vegetation affect velocity
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https://earthsurface.readthedocs.io/en/latest/sedtransport.html

Factors Influencing Sediment Entrainment and Transport

« Material along the bank can be more
variable than the bed material

Normal

« Factors that can influence particle bed load DIGIYeY
movement
* Flow |8
» Composition — geology, pedogenic '{
processes
e Climate
« Channel geometry \_‘Im_m ; TS
 Vegetation during  substrate
» Particle Movement (rolling, sliding, saltating,
suspension)

Clast collides and bounces
another into water

Sediment transport stages regarding the hydrologic, hydraulic, and geomorphological conditions:
adapted from Marshak 2005.
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Factors Influencing Sediment Entrainment and Transport

Arrangement of
particles affects
the degree of
packing of
grains, which in
turn has an
effect on the
erodibility of
substrates

T~
{ 1
/\

AN -
>

* Well sorted soil or sediment
Indicates that particles are generally
all the same size

» Well sorted soil or sediment has
higher porosity since there are more
voids between particles

* Poorly sorted or unsorted soll or

sediment indicates that particles are
a wide range of sizes

* Poorly sorted soil or sediment has

lower porosity since finer grains will
fill voids between the larger grains
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Substrate Quantification

Wolman Pebble Counts
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Introduction to Equations (1D vs 2D)

 HEC-RAS, CulvertMaster

e 1D vs 2D depends on available data set
format

1D data is typically limited to the results for the proposed
crossing and a few upstream/downstream crossings

2D data provides a better look at the wide-spread impacts
of the proposed crossing

HEC-RAS 6.1.0
File Edit Run

View Options

GI5 Tools  Help

B8] ol Yol 2380310 | | jelni PlEmsE [

Project:

Flan:

Geometry:

Unsteady Flow:

I
I
I
Steady Flow: [
I

Description:

J |US Customary Units

* The 2-year return period analysis informs
channel stability

e The 50-year return period event informs
design protection and erosion mitigation
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Modified Shields Equation — Grain Size Entrained

tc =1 -c(ps — pw)gD50
 Where:
e 1c is the critical shear stress (N/m?)

 71-cisthe dimensionless channel shear
stress (0.0464)

 ps — pw is the grain density — the water
density (Kg/m3)

* g is the gravitational acceleration (m/s)

D50 is the median grain size

Constraints and Limitations
 The most widely used semi-empirical approach

Dependent upon the critical shear stress

When sediment-transport equations fail it's often because they fail to
predict the beginning of sediment transport (i.e., critical threshold
conditions for initiating sediment movement)

More forces at play than included in frequently used
equations
Shear Stress (included)
Impact Force (not included)
Lift forces
e Buoyancy (included)
» Vertical velocity-gradient pressure force (not included)
» Upward turbulence (eddying) forces (not included)
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Komar Equation (1988) — Grain Size Transported

v = 57D50946

 Where:
* v is velocity (m/s)
» D50 is the median bed material grain size (cm)

 Values are then converted to m/s

1
V(m/s) * 100\ 7046
D50 ) = ( (""/27 ) /100

D50 - 1000 = D50,,,,,

Constraints and Limitations

River velocity is variable
Laminar vs turbulent flow

Typically, highest in the center of the river just below the
surface

Heavily dependent on the size and shape of the channel

Direct field measurement of river velocity in
the field is time-consuming

Sediment transport equations typically
assume that rivers carry sediment up to their
capacity, whereas actual load levels may be
lower

Lack of reliable field data on transport rates,
particularly bed load, makes it difficult to
determine the reliability of transport equations

6' aecom.com



Hydraulic Model Development

e An assessment of hydraulic
conditions was completed at a
selected study site in Ontario

» A two-dimensional (depth-
averaged) model of the study
area was developed in HEC-
RAS

 The model was developed
with available geo-spatial
layers and LIDAR

e Boundary Conditions were
applied from available peak
flow values and inferred
channel energy slope
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Hydraulic Model Development

Model Specifications:

* Mesh size is 5 m x 5 m, with s
a total number 7,202 cells AR

e Two upper boundary i
conditions were set (flow BHE e
hydrographs) with one | i
downstream boundary e
condition (normal slope) T

 Manning’s Roughness
Coefficients were set from
OLCC v.2 based on published
values

S0mlL |
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Hydraulic Model Developmen

5 BC Fasi]

Model Specifications:

e Three hydraulic crossing
configurations were included
In the geometry file

e These include a fully open
crossing, two bridges (20 m
East - 30 m West), and two
culverts (5 m East—8 m
West)

e These configurations were
added to analyze water
velocity and shear stress
values
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Hydraulic Model Development

Model Objectives:

e The objective of the hydraulic
modelling was to evaluate
different crossing geometries
and how they affect velocity
and shear stress regimes

e The crossing span Is
dependent on hydraulic
conditions, a larger span
usually means higher cost

e Balance between site
conditions, crossing
requirements, associated cost,
and environmental objectives

US Inside Bridge
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Hypothetical Crossing Example
Velocity — 2 year Return Flow Event

Base Conditions Bridge 1 Conditions Bridge 2 Conditions
East Span: 20 m East Span: 5 m
West Span: 30 m West Span: 8 m

B 3-3.5m/s
[ 25-3m/s
[ 2-25m/s
[115-2m/s
[ 1-15m/s
[ 05-1mis
B 0.25-0.5mi/s
Bl 0-025m/s
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Hypothetical Crossing Example
Velocity — 50 year Return Flow Event

Base Conditions Bridge 1 Conditions Bridge 2 Conditions
East Span: 20 m East Span: 5 m

West Span: 30 m West Span: 8 m

B 3-3.5m/s
[ 25-3m/s
[ 2-25m/s
[115-2m/s
[ 1-15m/s
[ 05-1mis
B 0.25-0.5mi/s
Bl 0-025m/s
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Hypothetical Crossing Example
Shear Stress — 2 year Return Flow Event

Base Conditions Bridge 1 Conditions Bridge 2 Conditions
East Span: 20 m East Span: 5 m

West Span: 30 m West Span: 8 m

[l 100 - 250
[ 50 - 100
O 35-50
[ 20-35
[ 15-20
[ 10-15
[ 5-10
B 25-5
B i1-25
B o-1
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Hypothetical Crossing Example
Shear Stress — 50 year Return Flow Event

Base Conditions Bridge 1 Conditions Bridge 2 Conditions
East Span: 20 m East Span: 5 m
West Span: 30 m West Span: 8 m

@l 100 — 250
[ 50 - 100
[ 35-50
[ 20-35
[ 15-20
[ 10-15
[ 5-10
B 25-5
B i1-25
B o-1
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Hypothetical Crossing Example
Grain Size Entrained — 2 year Return Flow Event

Base Conditions — Bridge 1 Conditions — Bridge 2 Conditions —
Shields Equation Shields Equation Shields Equation
East Span: 20 m East Span: 5 m
West Span: 30 m West Span: 8 m
1 1 1
X v ; Accumulation of v ;
v 1 A ' fines , j
». b ‘ P % 'l. 2
: "\' \ g \ '\ ! 1\ ’\
R . N K /! e ~ e K : .
84 N . 7 . . S -

B Boulder >256 \
[ Cobble [64 — 256] \
[ Very Coarse Gravel [32 — 64]

[ Coarse Gravel [16 — 32]

[ Medium Gravel [8 — 16] i 4
[ Fine Gravel [4 - 8] 2ol . By
[ Very Fine Gravel [2 - 4] i, Taa Tra
[ Very Coarse Sand [1 - 2] " / " 4 b‘,
[ Coarse Sand [0.5 - 1] - : - :

[ Medium Sand [0.25 — 0.5] l ’ ’
[ Fine Sand [0.125 — 0.25]

I Very Fine Sand [0.0625 — 0.125] \

Bl Siltand Clay [0 — 0.0625] " aecom.com




Hypothetical Crossing Example
Grain Size Entrained — 50 year Return Flow Event

Base Conditions — Bridge 1 Conditions — Bridge 2 Conditions —

Shields Equation Shields Equation Shields Equation
East Span: 20 m East Span: 5 m
West Span: 30 m West Span: 8 m

Accumulation of
fines at and
upstream of crossing

.
Decrease in D -
grain size :
entrained \

B Boulder >256
[ Cobble [64 — 256]

[ Very Coarse Gravel [32 — 64]
[ Coarse Gravel [16 — 32]

[ Medium Gravel [8 — 16]

[ Fine Gravel [4 - 8]

[ Very Fine Gravel [2 - 4]

[ Very Coarse Sand [1 - 2]

[ Coarse Sand [0.5 - 1]

[ Medium Sand [0.25 — 0.5]

[ Fine Sand [0.125 — 0.25]

Il Very Fine Sand [0.0625 — 0.125]
Bl Silt and Clay [0 - 0.0625] 6\ aecom.com

Decrease in
grain size
entrained



Hypothetical Crossing Example
Grain Size Transported — 2 year Return Flow Event

Base Conditions — Bridge 1 Conditions — Bridge 2 Conditions —
Komar Equation Komar Equation Komar Equation
East Span: 20 m East Span: 5 m
West Span: 30 m West Span: 8 m

fines

‘ ' % Accumulation of ‘ . %

- s

Y,M— N

’f

[ Boulder >256
[ Cobble [64 — 256]
[ Very Coarse Gravel [32 — 64]
[ Coarse Gravel [16 — 32]

[ Medium Gravel [8 — 16]

[ Fine Gravel [4 - 8]

[ Very Fine Gravel [2 - 4]

[ Very Coarse Sand [1 - 2]

[ Coarse Sand [0.5 - 1]

[ Medium Sand [0.25 — 0.5]

[ Fine Sand [0.125 — 0.25]

I Very Fine Sand [0.0625 — 0.125]
Bl Silt and Clay [0 — 0.0625] @ aecom.com




Hypothetical Crossing Example
Grain Size Transported — 50 year Return Flow Event

Base Conditions — Bridge 1 Conditions — Bridge 2 Conditions —
Komar Equation Komar Equation Komar Equation
East Span: 20 m East Span: 5 m
West Span: 30 m West Span: 8 m.

_ R ey
Decrease in 1 X
grain size 4 ' Accumulation of | {

transported fines at and ‘_

upstream of crossing

[l Boulder >256 Decrease in
[ Cobble [64 — 256] X grain size
[ Very Coarse Gravel [32 — 64] \ s transported \ e
[ Coarse Gravel [16 — 32] L 4

[ Medium Gravel [8 — 16]

[ Fine Gravel [4 - 8] ;

[ Very Fine Gravel [2 - 4]
[ Very Coarse Sand [1 - 2] ‘ { ‘
[ Coarse Sand [0.5 - 1]

[ Medium Sand [0.25 — 0.5]

[ Fine Sand [0.125 — 0.25]

Il Very Fine Sand [0.0625 — 0.125]

Bl Silt and Clay [0 - 0.0625] @ aecom.com




Sediment Entrainment and Transport Processes and Optimal
Watercourse Crossing Size

« Sediment entrainment and transport results can help determine if the proposed
Crossing size is appropriately sized

« Technical guidelines for watercourse crossings (TRCA, CVC) specify that
crossings should maintain natural sediment transport processes

« Hydraulic analysis can be used in combination with other methods to determine
an appropriate crossing size

S A g e 73
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Constraints and Limitations

e Available models (1D vs 2D)

 Where you are geographically (regional slope, sediment,
temperature, etc.)

o Stream type (alluvial, bedrock, braiding)
« Controlled flow systems (grade controls)
 Equations capture a moment in time

 There is inherent variabllity in sediment transport and
entrainment equations
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Opportunities

« Ability to appropriately size crossing
structures In co-ordination assessments

* Provides a more comprehensive picture of
how crossing size will impact sediment

 |dentify large-scale issues for sediment
transport/entrainment (2D Method)

 Ability to assess the impact that climate
change may have on watercourses (i.e.,
ability to increase flow and/or velocity, etc.)




Thank you for Watching

Questions?
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