

2024 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

Thank you to our sponsors!

Evaluating the effect of residential catchment maturity on phosphorus export coefficients in Ontario

March 26th, 2024

Sheida Moin, Dave Lembcke, Chandler Eves, Steve Auger, Kirsten Pellerin

Background

Phosphorus: Key nutrient leading to eutrophication

- Water quality protection
- Regulatory compliance
- Planning and design
- Environmental assessment

Factors affecting phosphorus coefficient

- Land use
- Soil type
- Precipitation pattern
- Atmospheric deposition
- Tile drainage
- Vegetation
- Ground water
- Household waste (pet & yard waste)
- Control Variable

Land use – High intensity residential

Growth of high intensity development

(residential, commercial, industrial,

institutional) will contribute >40% of total

phosphorus load to the Lake Simcoe

(Berger group, 2010).

Hobbie, et al. (2017).

Phosphorus coefficient for high intensity residential

A large range of 0.19-6.23 kg/ha/yr (Reckhow et al. 1980).

- MECP 1.32 kg/ha/yr (SWAMP studies (2005)).
- USEPA 1.3 kg/ha/yr (1983).
- Modeling 0.21-0.67 kg/ha/yr (Berger Group (2010)).

Monitoring sites

- High intensity residential
- Newmarket, ON

Age (Years)	Drainage Area
< 5	11.1
10-15	10
>20	23.63

Monitoring station

Automated sampler & AVM

5-minute flow monitoring

Time-paced, flow-composited sampling (EMC)

Closest rain gauge station (York Region/LSRCA)

Chloride, TSS, orthophosphate, total phosphorus

Visual tree count and ID

Load estimation method

- Limited number of events sampled
- Binned all the events based on size
- Average concentration of sampled events in each bin used to estimate total load of the bin

Load estimation method

• Validation and error estimation

Bin (precipitatoin mm)	Bin size	Total event volume	Load Chloride.kg	Load TSS.kg	Load OP.kg	Load TP.kg	
>25	7	12595	764.28	411.69	0.44	1.37	Observed
			720.23	458.80	0.49	1.44	Estimated
			-5.76	11.44	10.42	5.26	Error%
10-25	14	24185	1105.32	2292.18	1.05	4.74	Observed
			944.44	2606.80	0.89	5.05	Estimated
			-14.56	13.73	-14.75	6.68	Error%
0-10	17	9417	350.83	903.90	0.32	1.88	Observed
			329.93	1064.69	0.31	2.12	Estimated
			-6.34	15.10	-0.96	11.18	Error%
Sum	38		2220.43	3607.77	1.80	7.99	Observed
			2038.64	4083.17	1.65	8.54	Estimated
			-8.19	13.18	-8.72	6.92	Error%

Catchment Age	Catchment Area (ha)	Monitoring Duration (days)	Monitored precipitation (mm)	Monitored precipitation range (mm)	Monitored events	Sampled events	Percent of total volume sampled
< 5	11.1	643	1054	0.2-59	144	38	76%
10-15	10	858	1880	0.2-103	251	44	40%
> 20	23.63	837	1658	0.2-56	253	32	26%

Export coefficients

Catchment Age	Chloride Load (kg/ha/yr) ± Error%	TSS Load (kg/ha/yr) ± Error%	OP Load (kg/ha/yr) ± Error%	TP Load (kg/ha/yr) ± Error%
< 5	102.09 ± 8%	234.26 ± 13%	0.09 ± 8%	0.48 ± 7%
10-15	262.37 ± 5%	221.22 ± 3%	0.17 ± 2%	0.72 ± 2%
> 20	132.55 ± 1%	151.34 ± 23%	0.12 ± 6%	0.51 ± 14%

•MOE: 1.32 kg/ha/yr

•Modeling: 0.21-0.67 kg/ha/yr

•Catchment age does not describe phosphorus coefficients

Effect of runoff ratio

Catchment Age	Chloride Load (kg/ha/yr) ± Error%	TSS Load (kg/ha/yr) ± Error%	OP Load (kg/ha/yr) ± Error%	TP Load (kg/ha/yr) ± Error%	Runoff Ratio
< 5	102.09 ± 8%	234.26 ± 13%	0.09 ± 8%	0.48 ± 7%	0.33
10-15	262.37 ± 5%	221.22 ± 3%	0.17 ± 2%	0.72 ± 2%	0.39
> 20	132.55 ± 1%	151.34 ± 23%	0.12 ± 6%	0.51 ± 14%	0.33

Runoff ratio describes phosphorus coefficients

• Further evaluation of IP ratio

Effect of tree count and canopy coverage

Catchment Age	Chloride Load (kg/ha/yr) ± Error%	TSS Load (kg/ha/yr) ± Error%	OP Load (kg/ha/yr) ± Error%	TP Load (kg/ha/yr) ± Error%	Tree count (/ha)	Canopy coverage (m2/ha)
< 5	102.09 ± 8%	234.26 ± 13%	0.09 ± 8%	0.48 ± 7%	32	123
10-15	262.37 ± 5%	221.22 ± 3%	0.17 ± 2%	0.72 ± 2%	55	789
> 20	132.55 ± 1%	151.34 ± 23%	0.12 ± 6%	0.51 ± 14%	32	450

Tree count and canopy coverage describes phosphorus coefficients (also observed by Janke et al. 2017)

Baseflow

15

Baseflow

- High chloride concentrations (200-500 mg/l) [EMC 30-140 mg/l]
- Low TSS concentrations (2-6 mg/l) [EMC 20-114 mg/l]
- Low phosphorus concentrations
 - TP 0.01-0.08 mg/l [EMC 0.13-0.23 mg/l]
 - OP 0.005-0.03 mg/l [EMC 0.03-0.07 mg/l]

Groundwater interference

Effect of groundwater

- Cumulative baseflow volume ~ cumulative storm event volume
- Sampling the baseflow/groundwater is critical
- Low phosphorus concentrations in groundwater do not affect phosphorus coefficients

Conclusions

- Observed phosphorus coefficients for high intensity residential land use within Lake Simcoe watershed ranged in 0.48-0.72 kg/ha/yr
- Canopy coverage and runoff ratio within a catchment can describe phosphorus export coefficients
- Groundwater interference may influence the phosphorus export coefficients; therefore, it is important to monitor and sample
- Catchment age affects integrity of infrastructure

Next steps

- Understanding the influence of pet waste
- Understanding seasonal changes through modified load estimation methodology
- Understanding impervious to pervious ratios at each site
- Further studies: Time the sampling to capture the seasonal leaf effect
- Further studies: Variety of geographic areas, precipitation patterns and land use

Acknowledgement

Ministry of the Environment, Conservation and Parks

References

- Hutchinson Environmental Sciences Ltd., Greenland International Consulting Ltd., Stoneleigh Associates Inc. (2012). Phosphorus Budget Tool in Support of Sustainable Development for the Lake Simcoe Watershed.
 Prepared for: Ontario Ministry of the Environment.
- Hobbie, S. E., Finlay, J. C., Janke, B. D., Nidzgorski, D. A., Millet, D. B., & Baker, L. A. (2017). Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proceedings of the National Academy of Sciences, 114(16), 4177-4182.
- Louis Berger Group Inc. (2010). Estimation of the Phosphorus Loadings to Lake Simcoe.
- Reckhow, K.H., M.N. Beaulac, and J.T. Simpson, 1980: Modeling phosphorus loading and lake response under uncertainty. A manual and compilation of export coefficients. Michigan State University. East Lansing, Michigan.
- STORMWATER ASSESSMENT MONITORING AND PERFORMANCE (SWAMP) PROGRAMME. (2005). Synthesis of monitoring studies conducted under the stormwater assessment monitoring and performance programme. Accessed through: https://sustainabletechnologies.ca/app/uploads/2013/01/Final_SWAMP_Synthesis.pdf
- US Environmental Protection Agency (EPA). 1983. results of the nationwide urban runoff program. Volume 1 Final Report. PB84-185552. US Government Printing Office, Washington D.C.
- Janke, B. D., Finlay, J. C., & Hobbie, S. E. (2017). Trees and streets as drivers of urban stormwater nutrient pollution. Environmental Science & Technology, 51(17), 9569-9579.

2024 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

Thank you to our sponsors!

