

2024 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

Thank you to our sponsors!

GRI Performance Monitoring in the City of Vancouver

Source to Stream Conference March 2024 Cassandra Humes Monitoring Technician Green Infrastructure Implementation

I gratefully acknowledge that I live, work and play on the traditional, unceded territories of the xwma0kway'am (Musqueam), Skwxwú7mesh Úxwumixw (Squamish Nation) and səlilwətat (Tsleil-Waututh) Peoples.

Agenda

GRI in Vancouver Monitoring Program Monitoring Results

Conclusion

Rain City Strategy A high level, 30 year implementation plan that aims to manage rainwater sustainably through green infrastructure that

GRI in the City of Vancouver

Monitoring Program

GRI in Vancouver Monitoring Program Monitoring Results

Conclusion

Performance Monitoring Objectives

Surface Ponding <24 h Design infiltration rates match drawdown rates Retention/ filtration target being met 90% of annual rainfall

48mm in 24 h

Subsurface Storage empty in <72 h Soil moisture for plant health

WATER IN

RAI

Evaluate load reduction for target pollutants

Optimization Monitoring Objectives

Permeable Pavement performance over time

Condition scores for all GRI assets Evaluate impact of GRI on biodiversity

Performance Monitoring Programs Water Level Monitoring Soil Mo

Measures drawdown performance of asset over time

 HOBO loggers installed in wells and data manually collected

 Novion® loggers installed in wells and data uploaded to Cloud Platform

Soil Monitoring

Measures

Volumetric Water Content
Electrical Conductivity
Temperature

 Sensor installed during construction and logger installed post-construction

Performance Monitoring Programs

Synthetic Runoff Tests Volume Reduction

- Water truck or hydrant as water source
- No bypass or overflows
- **GRI contaminant removal**
- Pollutants of known mass injected
- Water samples collected at outlet
- Combine with flow measurements to get mass balance

Performance Monitoring Programs Visual Monitoring

See systems in action! Look at:

- Bypass
- \circ Overflow
- Ponding
- Sediment Accumulation
- Overall Condition
- Rainspection: inspect during a large storm event
- Post-Rainspection: inspect 24 hours after a large storm event

Optimization Monitoring Programs Permeable Pavement Testing

Appropriate maintenance tasks

Length of permeability

Optimization Monitoring Programs

Condition Assessments

Verify systems are performing as designed

Condition scores
 based on evaluation
 of different
 components of the
 system

Bioretention Condition Assessment Inspector Guidebook

Very Good/ No Issues Everything is awesome. Works perfectly, don't change a thing!

Good/Minimal Issues

In great shape. A few minor issues, but they aren't impacting overall function, and could be solved with routine maintenance. Functionality greater than 75%

Fair

Fair/ Some issues

Still functions, but not to its design specifications, or site has noticeable issues that may impact function in the near future. Functionality between 25-75%. Requires routine maintenance and/or minor repairs.

Poor/ Moderate issues Functioning at 25% or less and requires rehabilitation.

Very poor/ Extensive Issues

Pintrest level fail. Extensive damage and is nonfunctional. If the failure is a health and safety risk to the community, it should automatically be scored a 5.

Optimization Monitoring Programs

Biodiversity Monitoring

Understand impacts of the co-benefits of GRI

- Monitor biodiversity with citizen science bioblitzes
- Repeat bioblitzes post-construction

BIOBLITZ!

A **BioBlitz** is an event where members of the community **identify** and **record** as many species as they can in a specific location during a specific time frame. This information can be valuable for researchers monitoring **biodiversity**. The best part is that **anyone** can participate and contribute!

Some useful tools for a BioBlitz include **cameras, binoculars, microscopes, nets** for collecting insects, and clear **containers** for holding specimens during viewing. You'll also want a way to **record** what you find. If you have a smartphone, the **iNaturalist** app can make it simple to document your observations.

rown-headed Cowb

Molothrus atei

You don't have to be an expert in identifying species to be part of a BioBlitz. Some BioBlitz organizers provide **guides** to help you recognize local flora and fauna. If you're using the iNaturalist app, you can take a photo of an unidentified species and the app will offer a suggestion of what it might be. Human observers can then confirm or correct that identification.

A BioBlitz can be a great, hands-on way to interact with nature. But it can also provide valuable data about **species distribution** for researchers. If captured through iNaturalist, the observations can achieve "research grade" status. This means they become part of the data available through the **Global Biodiversity Information Facility** and the **Encyclopedia of Life**.

NATIONAL GEOGRAPHIC

Monitoring Results

GRI in Vancouver Monitoring Program Monitoring Results

Conclusion

Monitoring Sites

63rd Ave. and

Yukon St.

Design Infiltration Rate (mm/h)

39

63rd Ave. and

Yukon St.

Water Level

497

Sionn Calegory	mm)	and 48 mm)	48 mm)	
Drawdown Duration (h)	1	1	3.1	
Drawdown Rate (mm/h)	466	583	465	
Design Infiltration Rate (mm/h)	39			

Water Level Site Summary	Design Subsurface infiltration Storage rates empty in match <72 h drawdown			
Site	Typology	Average Drawdown Time (h)	Average Drawdown Rate (mm/h)	Design Infiltration Rate (mm/h)
Yukon St. and 63 rd Ave.	Bioswale	1.3	497	39
Quebec St. and 2 nd Ave. South	Soil Cell RTT	27.9	9.4	10
Quebec St. and 2 nd Ave. North	Soil Cell RTT	35.9	8.7	10
Richards St. Block H	Bioretention	13.8	40.3	5
Haro St. and Bidwell St.	Dry Well	12.3	92	47
Haro St. and Jervis St.	Bioretention	18.5	20.6	5
Haro St. and Bute St.	Bioretention	N/A	N/A	N/A
W 10 th Ave. and Heather St. East	RTT	22.7	29.7	50
W 10 th Ave. and Heather St. West	RTT	5.15	35.8	50
Harriet Laneway	Infiltration Trench	37.7	6.9	1
Woodland Dr. and 2nd Ave. North	Bioretention	18.5	13.1	1
Woodland Dr. and 2nd Ave. South	Bioretention	9	44	1
Average		16.5	72.5	

Surface Ponding

Surface Ponding <24 hours Soil Moisture

20

AU9 2021

Dec 2021

Apr 2022

AUG 2022

Dec 2022

Apr 2023

AU9 2023

800

1000

20

0⊥

Jan 2022

May 2022

Sep 2022

800

1000

sep 2023

Jan 2023

May 2023

Synthetic Runoff Tests

Test # 1 – Bioretention 2021 77% Volume Reduction >99% TSS Mass Removal Test # 2 – Bioretention 2022 < **76%** Volume Reduction 98% 6PPD-quinone Mass Removal

Conclusion

GRI in Vancouver Monitoring Program Monitoring Results

Performance Monitoring Objectives

Surface Ponding <24 h No ponding after 24 hours Design infiltration rates match drawdown rates rates 7 sites equal or greater than design infiltration rate

Retention/ filtration target being met

Add caps to underdrains

Subsurface Storage empty in <72 h

More capacity for subsurface storage Soil moisture for plant health

Moisture range amenable to plant health Evaluate load reduction for target pollutants

High pollutant mass removal

Next Steps

- Continue to monitor water level and drawdown
- Spot check soil moisture
- Water quality and flow testing as opportunities arise
- New assets typologies to monitor
- Sediment monitoring in dry wells
- Adapt GRI practices after installation
- Network connected monitoring devices
- Citizen science biodiversity monitoring

For more information about City of Vancouver's GRI Performance Monitoring

Cassandra Humes Cassandra.humes@vancouver.ca

2024 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

Thank you to our sponsors!

