

2024 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

Thank you to our sponsors!

Data Driven Stormwater Management for Climate Resilience

Abhijeet Patel | WSP

Disclaimer

• The following presentation on AI applications in hydrology science reflects recent trends and findings from current research.

• I am not an author of the research discussed herein; this presentation is based on my personal interest in the topic.

• The views and opinions expressed are solely mine and do not represent those of WSP.

Contributors

Ē

University of Alabama

Johannes Kepler University

Upstream Tech, PBC

University of Arizona

NASA

Frederik 🗸 Kratzert

Daniel $\mathbf{\mathbf{v}}$ Klotz

Nearing G Grey

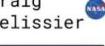
Alden Sampson

Hochreiter 🗙

Sepp

Jonathan A Frame

Craig Pelissier



Hoshin A Gupta

https://neuralhydrology.github.io/

Presentation Outline

- Problem statement
- Case study of ML application in context of Hydrology and Climate Change
- Other avenues to be explored with AI and ML
- Summary, conclusion and Q&A

This presentation is NOT about...

Application of AI /ML for government policy and regulation pertaining to climate resilience

Financial aspect of climate resilience planning using AI/ML

In-depth technical analyses of concepts discussed however the github repositories mentioned in the video will be shared in the end

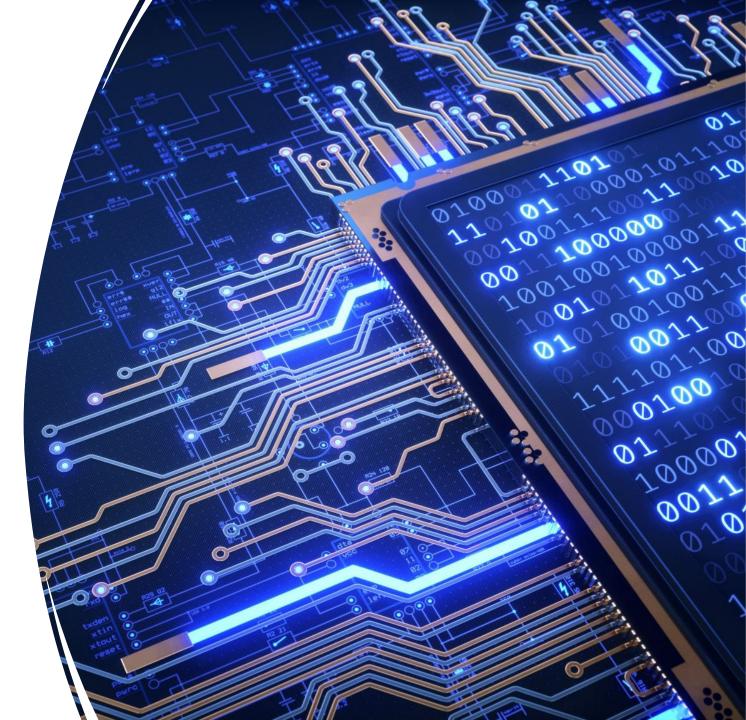
Word Definitions

- Climate resilience: It is the capacity or ability to anticipate and cope with shocks, and to recover from changing climate conditions and disruptions in a timely and efficient manner.
- Examples:
- Increased Capacity for Water Storage
- Integration of Nature-Based Solutions
- Flexible Infrastructure Design

- Climate-Informed Planning and Decision-Making

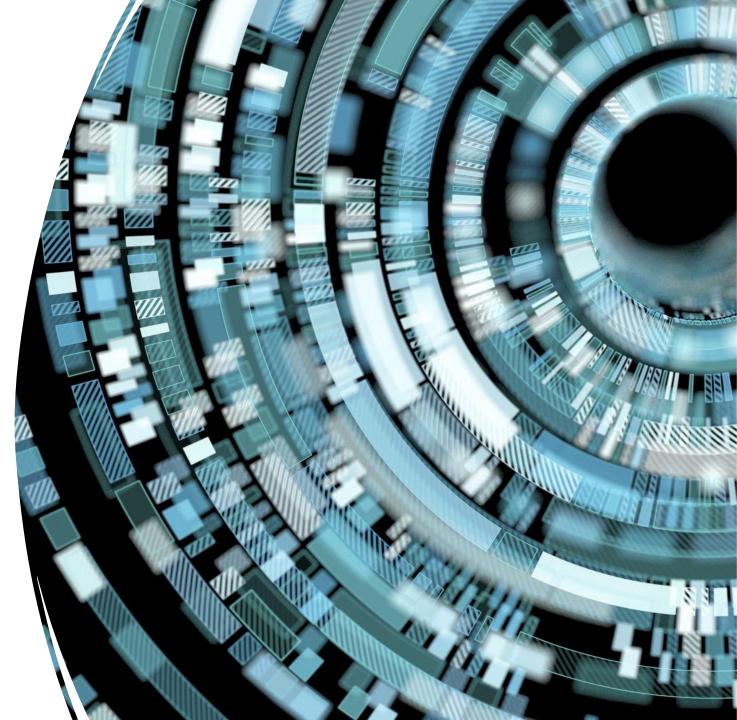
Word Definitions

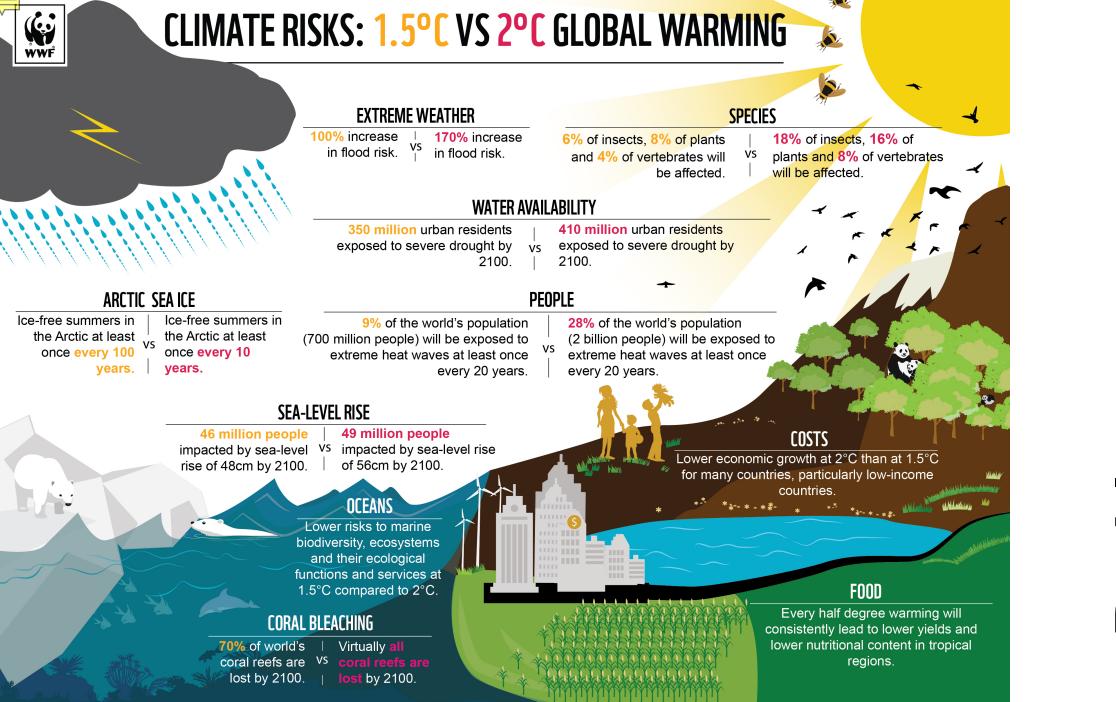
- Artificial Intelligence: AI refers to the development of computer systems or algorithms that can perform tasks typically requiring human intelligence, such as understanding natural language, recognizing patterns in data, and making decisions.
- Examples of AI :
 - Natural Language Processing (NLP)
 - Computer Vision
 - Robotics
 - Expert Systems



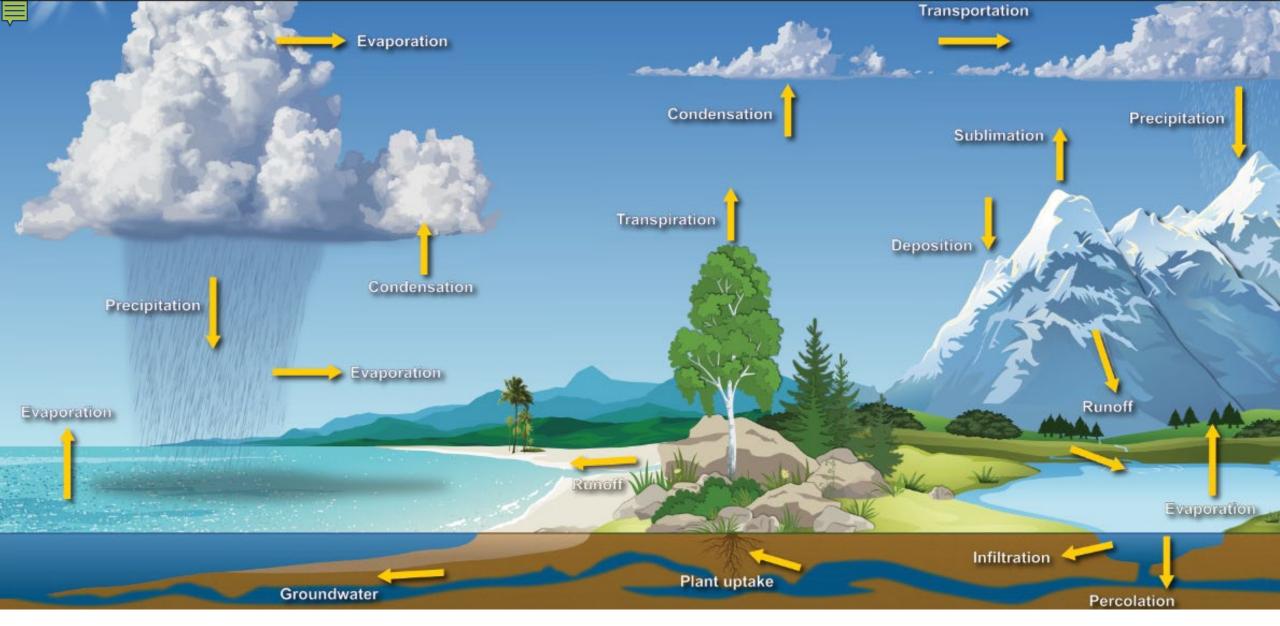
Word Definitions

- Machine Learning: ML is a subset of AI that focuses on algorithms and techniques that enable computers to learn from data and improve their performance on specific tasks over time, without being explicitly programmed.
- Examples of ML :
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
 - Deep Learning

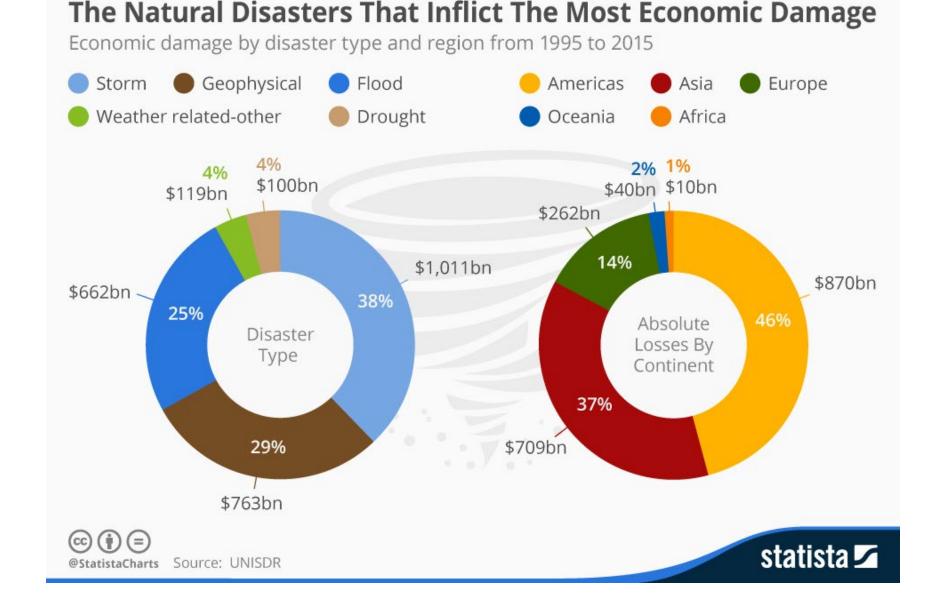




Φ S **D** 0



Climate change is affecting where, when, and how much water is available.



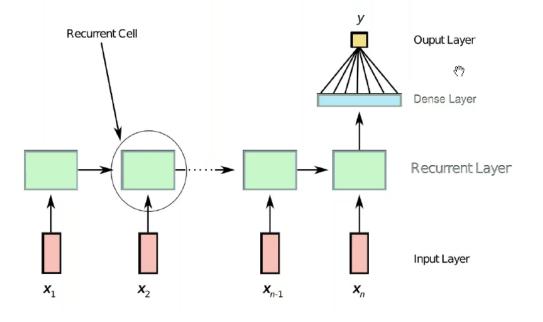
Problem statement

の

Accurate predictions and planning are one of the most successful predictors of survival Better forecasting models are needed For climate resilience

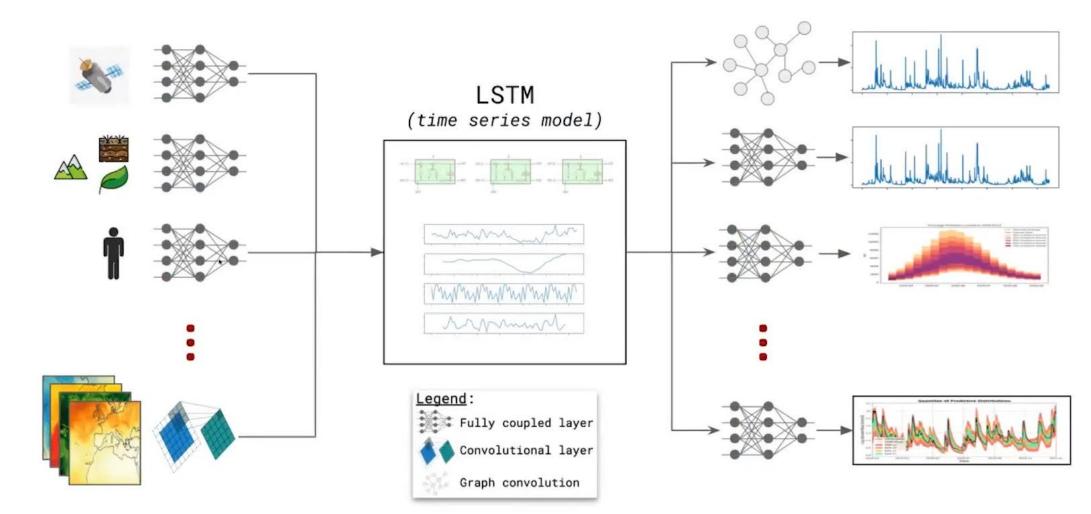
The LSTM

- **R**ecurrent **N**eural **N**etwork with explicit memory (Hochreiter and Schmidhuber, 1997)
- Used across a wide range of applications
 - E.g. language modeling, machine translation, image captioning, etc.

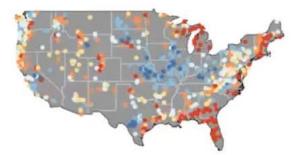


Water Resources Research, Volume: 55, Issue: 12, Pages: 11344-11354, First published: 23 November 2019, DOI: (10.1029/2019WR026065)

Embedding into Deep Learning Models



Water Resources Research, Volume: 55, Issue: 12, Pages: 11344-11354, First published: 23 November 2019, DOI: (10.1029/2019WR026065)

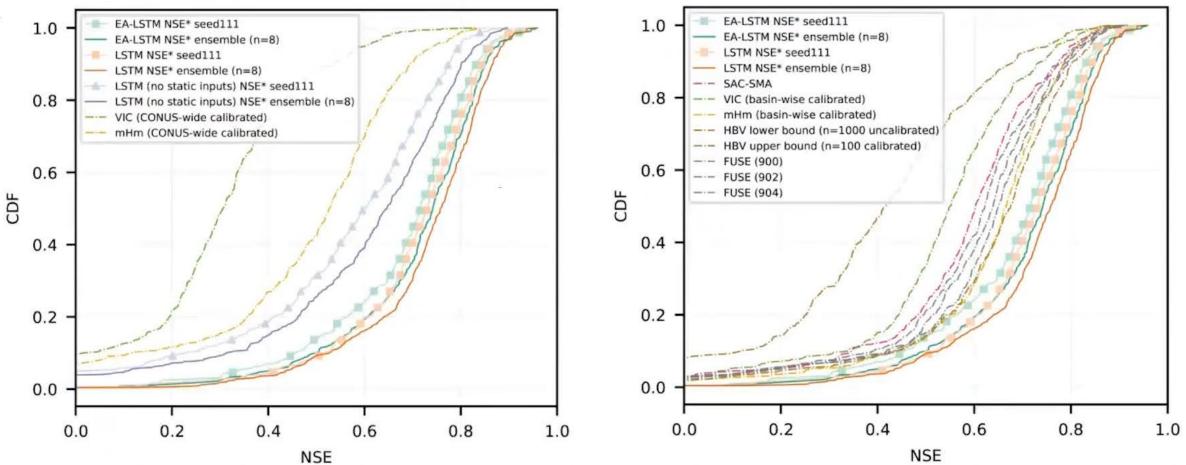


Regional Modeling

Regional LSTMs are better than catchment-specific hydro models.

Benchmarking vs. basin-wise calibrated models

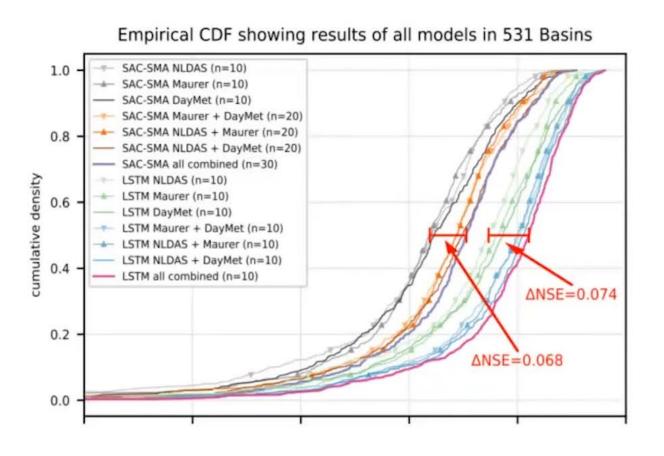
Benchmarking vs CONUS-wide calibrated models

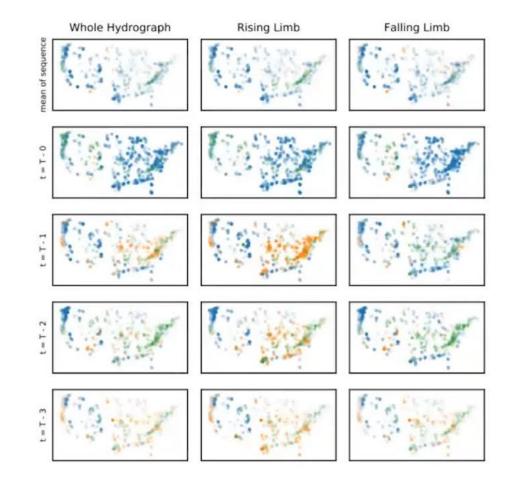


Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., & Nearing, G. (2019). Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology & Earth System Sciences, 23(12).

Certain "hard" tasks are easy with DL

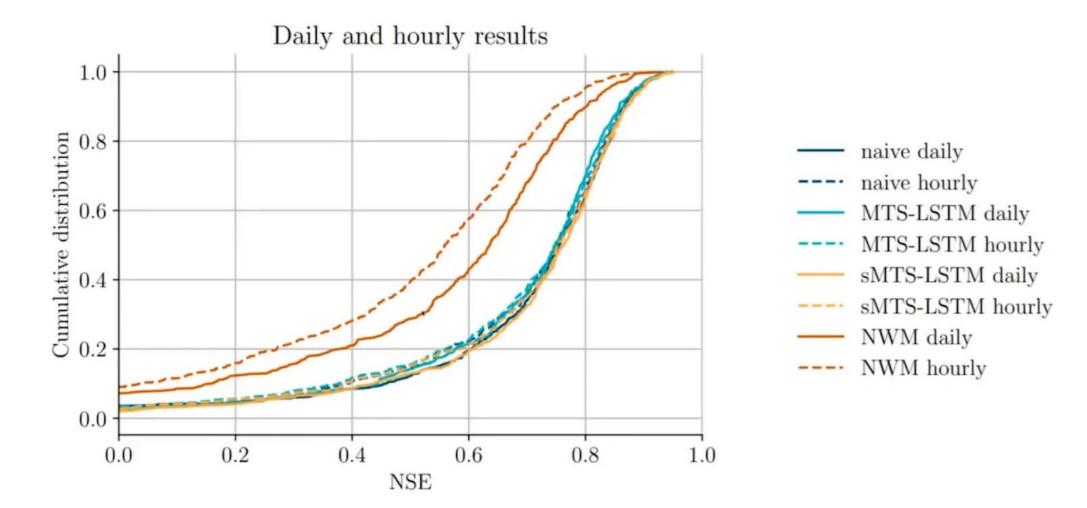
Multiple Forcings w/o Ensembles





Certain "hard" tasks are easy with DL

Multiple Time Scales



Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., & Hochreiter, S. (2020). Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network. arXiv preprint arXiv:2010.07921.

Physics into Deep Learning Models

Model							
	MC? ^a	KGE ^b	Bias ^c	$\sigma_{rat}{}^{d}$	r^2	FHV ^e	FLV ^f
Deep Learning Models							
MC-LSTM Ens.	yes	0.764*	-0.020*	0.842	0.873*	-14.689*	-24.651*
LSTM Ens.	no	0.762	-0.034	0.838	0.886	-15.740	36.267
Conceptual Hydrology Mod	els						
SAC-SMA	yes	0.632	-0.066	0.779	0.792	-20.356	37.415
VIC (basin)	yes	0.588	-0.018	0.725	0.760	-28.139	-74.769
VIC (regional)	yes	0.257	-0.074	0.457	0.651	-56.483	18.867
mHM (basin)	yes	0.691	-0.040	0.807	0.832	-18.640	11.433
mHM (regional)	yes	0.468	-0.039	0.589	0.793	-40.178	36.795
HBV (lower)	yes	0.391	-0.023	0.584	0.713	-41.859	23.883
HBV (upper)	yes	0.681	-0.012	0.788	0.833	-18.491	18.341
FUSE (900)	yes	0.668	-0.031	0.796	0.815	-18.935	-10.538
FUSE (902)	yes	0.690	-0.047	0.802	0.821	-19.360	-68.224
FUSE (904)	yes	0.644	-0.067	0.783	0.808	-21.407	-67.602

Table 1: Benchmarking Results. All values represent the median over the 447 basins.

^aMass conservation (MC).

^b*Kling-Gupta Efficiency:* $(-\infty, 1]$, values closer to one are desirable.

^c*Bias:* $(-\infty, \infty)$, values closer to zero are desirable.

^d*Variance Ratio:* $(-\infty, \infty)$ *, values closer to one are desirable.*

^e*Top* 2% *high flow bias:* $(-\infty, \infty)$ *, values closer to zero are desirable.*

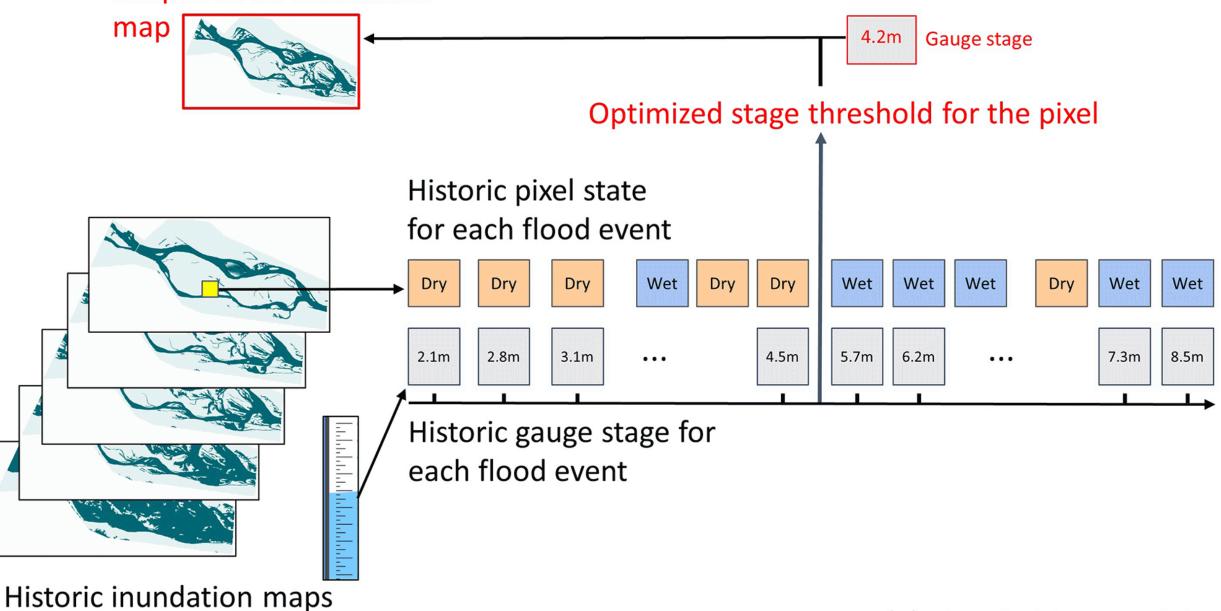
^f*Bottom 30% low flow bias:* $(-\infty, \infty)$ *, values closer to zero are desirable.*

^{*}*MC-LSTM* is significantly different than the LSTM by Wilcoxon rank test at $\alpha = 0.05$.

Slight performance increase over LSTM, but currently the best peak-flow model we've tested.

What does it mean for Climate change?

Output flood inundation Nevo, S. et. al.: Flood forecasting with machine learning models in an operational framework, Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, 2022.

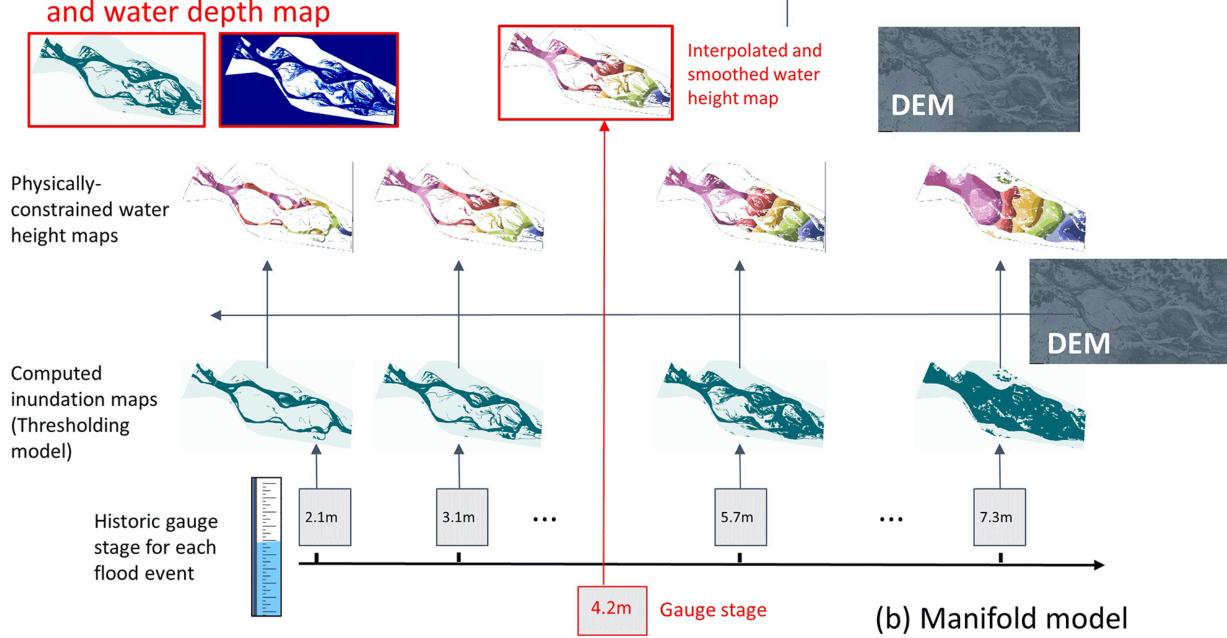


and gauge stage data

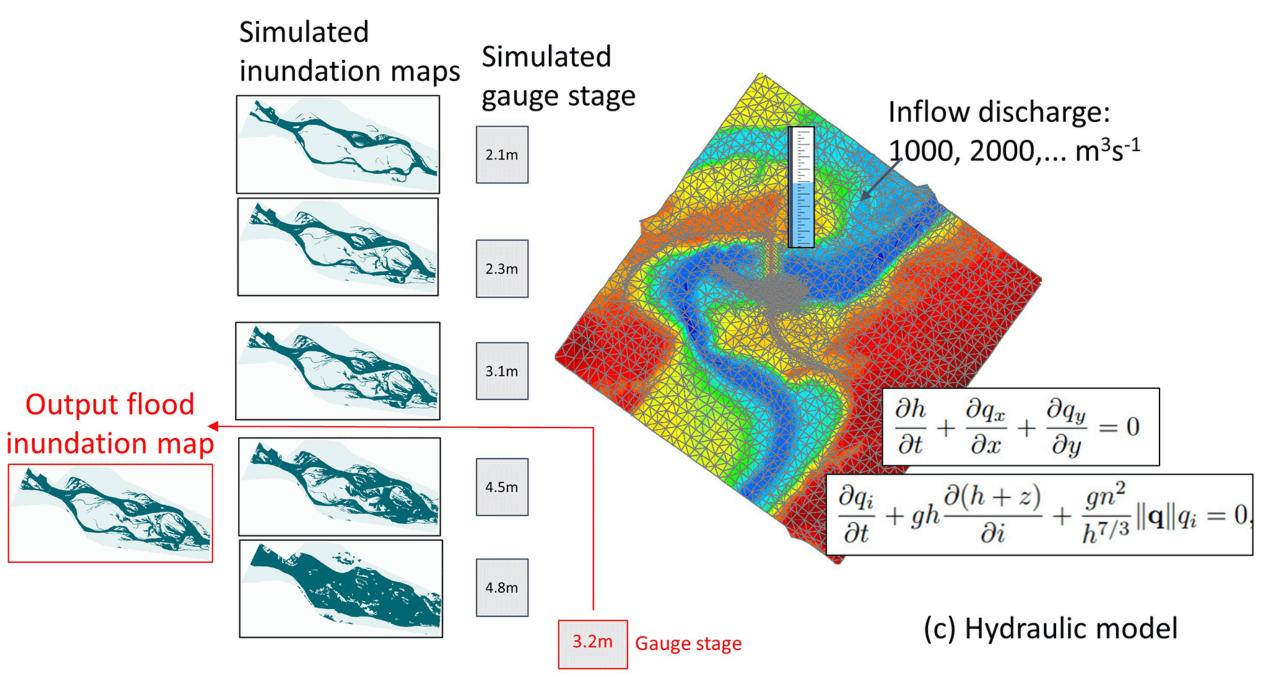
(a) Thresholding model

Output flood inundation map and water depth map

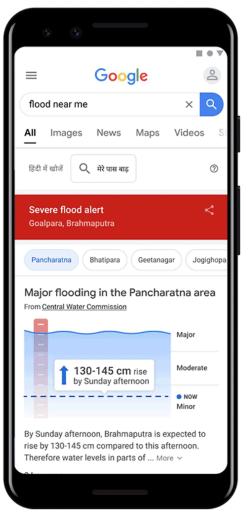
Nevo, S. et. al.: Flood forecasting with machine learning models in an operational framework, Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, 2022.

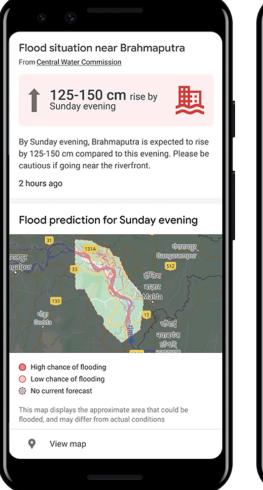


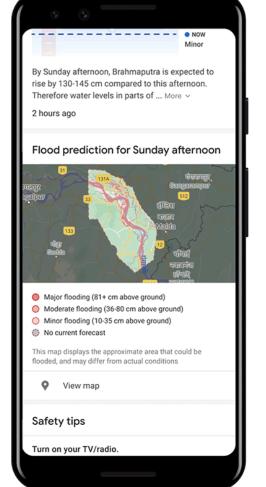
Nevo, S. et. al.: Flood forecasting with machine learning models in an operational framework, Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, 2022.

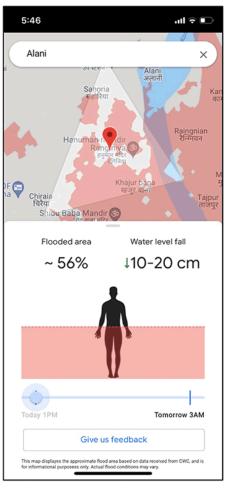


Google Flood Hub https://sites.research.google/floods

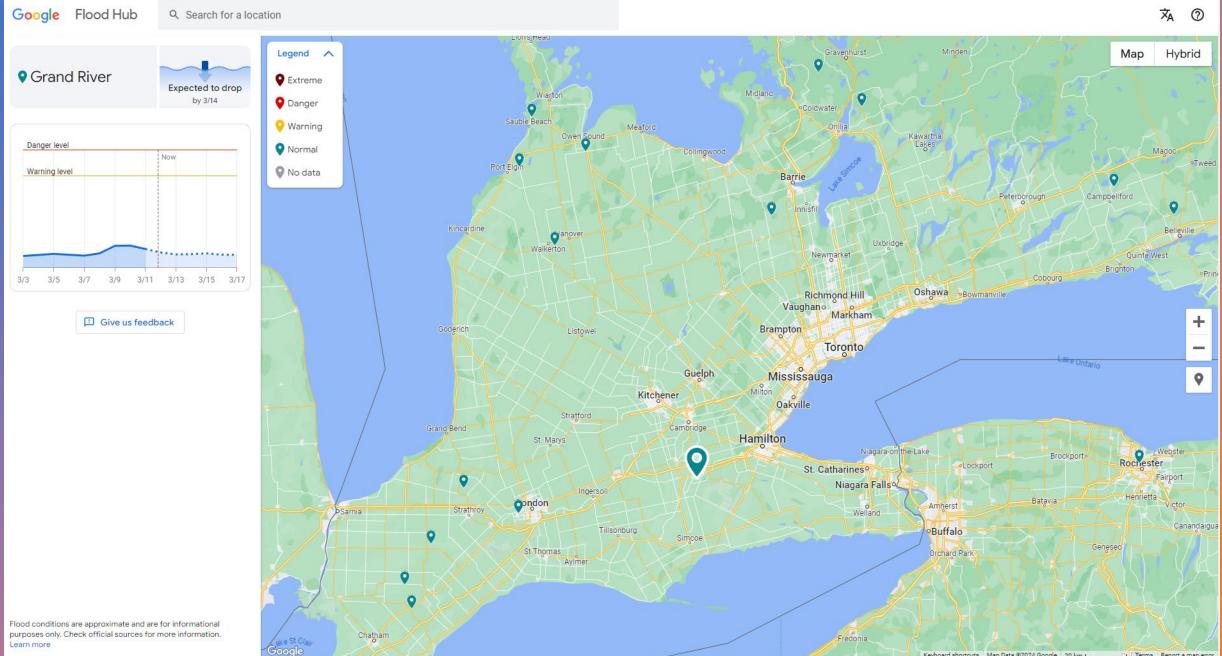








Nevo, S. et. al.: Flood forecasting with machine learning models in an operational framework, Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, 2022.

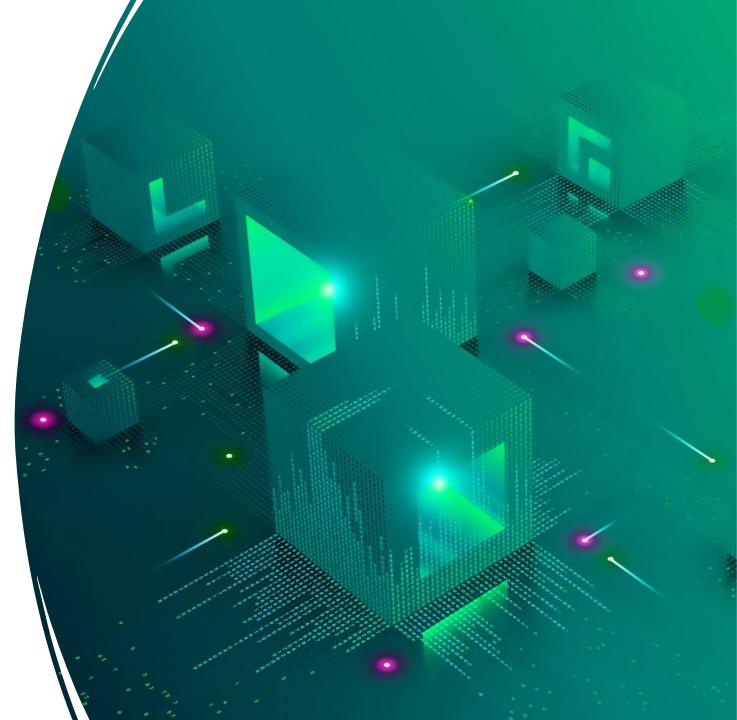


Keyboard shortcuts Map Data ©2024 Google 20 km L_____ Terms Report a map error

- Urban Flooding Prediction and Management: Al algorithms can analyze historical flood data, urban topography, and land use patterns to predict areas at high risk of urban flooding during heavy rainfall events.
- Water Quality Monitoring and Contamination Detection: ML algorithms can analyze water quality data collected from sensors and monitoring stations to detect contaminants, pollutants, and harmful bacteria in stormwater runoff.

- Smart Irrigation Systems: AI-powered irrigation systems can optimize water use efficiency in urban landscapes, parks, and green spaces by analyzing weather forecasts, soil moisture levels, and plant water requirements.
- Floodplain Mapping and Risk Assessment: ML algorithms can analyze remote sensing data, LiDAR imagery, and elevation models to map floodplains and assess flood risk levels in vulnerable areas.

- Green Infrastructure Performance Monitoring: Al-powered sensors and IoT devices can monitor the performance of green infrastructure assets, such as bioswales, retention ponds, and permeable pavements, in real-time.
- Dynamic Stormwater Management: Al algorithms can optimize stormwater management strategies by dynamically adjusting stormwater storage, detention, and infiltration systems based on forecasted weather conditions and anticipated runoff volumes.



- Community Resilience Planning: AI-powered decision support tools can facilitate community engagement and participatory planning processes to develop climate resilience strategies at the neighborhood level.
- Infrastructure Maintenance and Upgrades: Alpowered image recognition can analyze CCTV footage and aerial imagery to assess the condition of stormwater infrastructure, such as culverts, pipes, and drainage channels.

Some other examples...

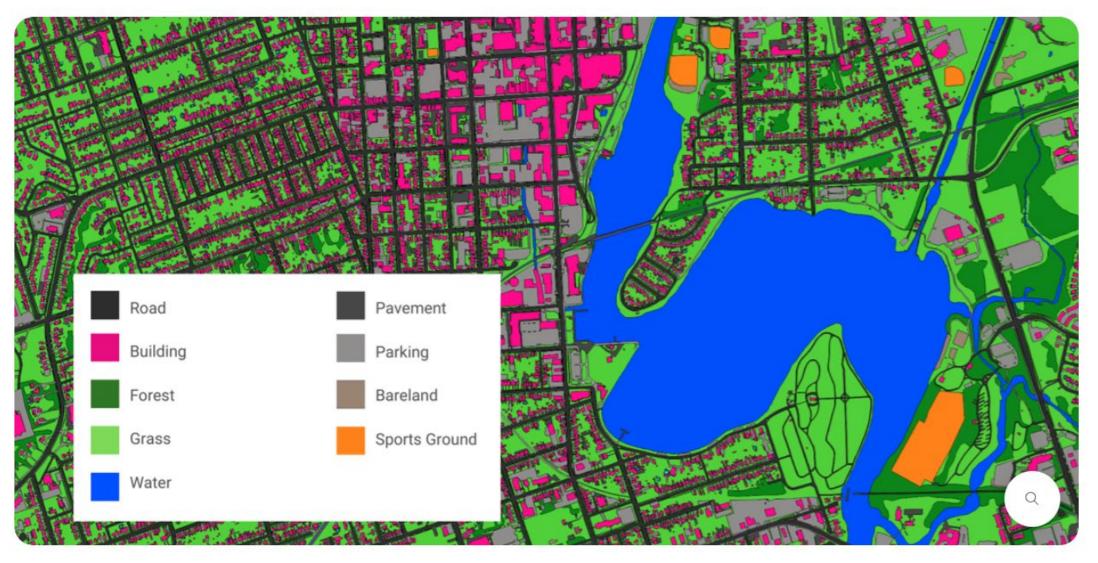
• Hydroinformatics Institute: applying AI techniques such as ML and DL to address water-related challenges such as hydrological forecasting, water supply optimization, and climate change impact assessment. Read More: h2i.sg

• **HydroLabs**: : provides AI-powered solutions for water quality monitoring, pollution detection, and environmental assessment, using sensors, drones, and satellite imagery for data collection and analysis. Read More: **hydrolabs.co**

• Aquaoso: develops AI-powered software solutions for water risk management in agriculture and real estate by utilizing ML algorithms to analyze water data, identify water-related risks, and facilitate informed decision-making for water resource management. Read More: aquaoso.com

City of Peterborough builds integrated flood model with updated land cover data

Ecopia® is using AI to build a digital twin of the world, converting high resolution geospatial imagery into comprehensive, accurate, and up-to-date vector maps for use in data-driven decision-making across industries.



A sample of land cover data extracted by Ecopia for use in the City of Peterborough's integrated flood model

Timéline of Geo-Sciences' modelling

ML Based Parameters & Post-Processing Al supports Physics

CMIP Climate Models 1-2 Decades Physics

Several Decades

×

Embeddings (Taskfocused) _{Months} Al

Semi-supervised

Conceptual Graph Models Al on concepts

1-2 Years

ML Based

Parametization

AI + Physics

5+ Years

What are the conclusions?

Questions?