

2024 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

Thank you to our sponsors!

Reading the Reach: A Novel, Systematic, GIS-Based Approach to Erosion Hazard Mapping in Asset Management

March 27, 2024

Max Ornat, EIT

Scott Cowan, P.Geo., CTech

KERR WOOD LEIDAL consulting engineers

REGULATED WATERCOURSES

~1.3 million linear meters of regulated watercourse (1,300 KM)

SANITARY MAINTENANCE HOLES

~ 56,000 sanitary maintenance holes

Significant potential for interaction between watercourses and sanitary MH

HISTORICAL APPROACH TO IDENTIFYING EROSION ISSUES

Routine annual site assessments of a portion of MH dataset (100-200 per year)

Annual site assessments – erosion is a concern!

Challenge: earmarking funding for maintenance / mitigation works is difficult

THE PILOT STUDY

Region identified 381 MH at **<u>RISK</u>** of further damage due to bank erosion

Provide relative **<u>RISK</u>** rankings for the 381 to help Region prioritize

RISK TO MH FROM LATERAL EROSION

Approach to Estimate Lateral Erosion Hazard

CONSTRAINTS

<u>Data</u>:

- Mapping of regulated watercourses mostly polyline
- Orthophotographs (2005 and 2021)
- Mapping of MH dataset

<u>Scale:</u>

- The Region is geographically diverse
- Site scale and regional scale would be too fine and coarse, respectively
- Reach-scale approach most appropriate for desktop analysis

LIMITATIONS

- Vertical scour not considered available data was limited and spatial scale cost prohibitive
- Maintenance hole infrastructure only (i.e., excludes sanitary sewer)
- Orthophotograph record was limited to 2005 2021 (16 years)
- Lateral erosion hazard estimation based on historical observations (i.e., assumes the past will extend into the future)

METHODOLOGY

Task No.	Task Name	Task Description
1	Reach Identification	Identify reaches adjacent to MH
2	Analysis	Reach-scale estimation of average channel width and average annual migration rate
3	Erosion Hazard Mapping	Delineate erosion hazard zones for each reach
4	Erosion Hazard Ranking	Assign erosion hazard to each MH

TASK 1 – REACH SCREENING

Step 1: Radius of 500 m to identify adjacent watercourse

Step 2: Watercourse extended upstream and downstream to define reach

58 reaches were identified

TASK 2 - ANALYSIS

Step 1: Estimate the average annual migration rate at outside bends

Looking for most extreme cases (3 locations)

Estimate average annual migration rate

Applied to entire reach

TASK 2 - ANALYSIS

Step 2: Estimate the top of bank location for the entire reach

Watercourses were provided as polylines

Estimate average reach-scale channel top width (3 locations)

+20% (natural variability in channel form and centerline mapping inconsistencies)

TASK 2 - ANALYSIS

Step 3: Reach description summary

Average annual lateral migration rate extended over selected planning horizon

Planning horizons selected by the Region (0-5, 5-15, 15-30, 30-50, 50+ years)

	Conservation	Municipality	Watercourse Name	Est. Avg. Top Width (m)	Est. Avg. Annual Lateral Migration Rate (m/yr)	Estimated Erosion Hazard Offset (m)			
Reach	Authority					5-Year	15-Year	30-Year	50-Year
TA-1	TRCA	Brampton	Tributary A	5.0	0.09	0.5	1.4	2.7	4.5
ECE-1	TRCA	Brampton	Etobicoke Creek East Branch	9.3	0.07	0.4	1.1	2.1	3.5
ECE-5	TRCA	Brampton/Mississauga	Etobicoke East Branch	15.2	0.43	2.2	6.5	12.9	21.5
T3-1	TRCA	Brampton/Mississauga	Tributary 3	5.2	0.11	0.6	1.7	3.3	5.5
SC-1	TRCA	Caledon	Salt Creek	9.2	0.07	0.4	1.1	2.1	3.5
ECW-5	TRCA	Brampton	Etobicoke Creek	16.4	0.28	1.4	4.2	8.4	14.0
ECW-1	TRCA	Brampton	Etobicoke Creek	18.6	0.24	1.2	3.6	7.2	12.0
ECW-6	TRCA	Brampton	Etobicoke Creek	18.2	0.49	2.5	7.4	14.7	24.5
LEC-1	TRCA	Mississauga	Little Etobicoke Creek	9.4	0.07	0.4	1.1	2.1	3.5
LEC-2	TRCA	Mississauga	Little Etobicoke Creek	14.0	0.13	0.7	2.0	3.9	6.5
GRTT-1	TRCA	Brampton	Tributary to Gore Road Tributary	5.1	0.03	0.2	0.5	0.9	1.5

RESULTS OF REACH-BASED DESKTOP GEOMORPHOLOGICAL ASSESSMENT

TASK 3 – HAZARD MAPPING

Buffer top of bank by estimated lateral erosion hazard offset

Different reaches have different erosion hazards

ent erosion		
Planning Horizon	Colour	N 45 1 1 1 1 1 1 1
0-5	Red	
5-15	Orange	
15-30	Yellow	
30-50	Green	
50+	No banding	

TASK 4 – ASSIGN HAZARD

Demonstration on how erosion hazard bands are assigned to MH

TYPICAL SITES WITH HIGH EROSION HAZARD

RESULTS

Summary of total number of MHs within each erosion hazard category

- Over half in 50+ bucket
- ~ 20% in 0 15 year buckets

Erosion Hazard (Years)	No. of Maintenance Holes	% of Dataset
50+	241	63%
30 – 50	32	8%
15 – 30	36	9%
5 – 15	24	6%
0 – 5	48	13%

Risk Assessment Summary

RESULTS – RISK ASSESSMENT

RESULTS – RISK ASSESSMENT

Results can be used to prioritize resources for site investigation and potentially mitigation

Risk	No. of Maintenance Holes	% of Dataset
Low	138	36%
Medium	177	47%
High	66	17%

Next Steps and Summary

NEXT STEPS

Site assessments to 66 high-risk sites (confirm mitigation approach)

Region expanded erosion hazard review to all MHs (~56,000) within the region

KEY TAKEAWAYS

- Lots of potential for interaction between the built environment and watercourses
- Understanding geomorphological processes allows asset managers to prioritize resources
- **Reach-scale erosion rate mapping is an effective** tool for **triaging** infrastructure based on relative lateral erosion hazards
- Geomorphology can be leveraged throughout the entire asset management lifecycle from planning to implementation

Scott Cowan SCowan@kwl.ca

Max Ornat Maximilian.Ornat@stantec.com

2024 Conference Canada's Premier Stormwater and Erosion and Sediment Control Conference

Thank you to our sponsors!

