

Oldcastle Infrastructure

Sustainable PERMACON Technologies

EVALUATION PROGRAM

StormTrap[•] HOOLE AR CONCRETE STORNWATER MANAGEMENT

2

ENVIROPOD[®]

terrafix

NEXT STORM

MEDIA SPONSOR

HOSTS

Presented by:

In association with:

Balancing Level of Service and Flood Risk: Are we bound to oversize Municipal Stormwater Infrastructure?

Shawna Chambers, P.Eng., DPA (she/her) Division Manager, Stormwater Engineering Environment and Infrastructure City of London 519-661-2489 x7318 schambers@london.ca

Amna Tariq, P. Eng., (she/her) Environmental Services Engineer, Stormwater Engineering Environment and Infrastructure City of London, 519-661-2489 x6856 atariq@london.ca

- 1. Background
- 2. Evolution of SWM Industry
- 3. Flood Mitigation Practices
- 4. Modelling Pilot Project
- 5. Infrastructure Costs
- 6. Lessons Learned / Next steps

Stoney Creek Flood Control Facility London, ON

The Balance

Uncertainty

Climate change Policy updates Modelling limitations

Engineering Judgement

Flood Protection

Risk Management Emergency Management Land Use Policy

Level of Service

Infrastructure solutions Cost to Taxpayers Land Value/Usability

Evolution of Stormwater Management

Management					Species at Risk
					Green Infrastructure
				Mfd. Treatment Devices	Mfd. Treatment Devices
Modified from MOE. Subwatershed Planning, June 1993				Low Impact Development	Low Impact Development
				Water budget	Water budget
				Climate Change Mitigation	Climate Change Mitigation
			Fluvial Geomorphology	Fluvial Geomorphology	Fluvial Geomorphology
			Terrestrial Habitat	Terrestrial Habitat	Terrestrial Habitat
			Monitoring	Monitoring	Monitoring
			Enhancement Opportunities	Enhancement Opportunities	Enhancement Opportunities
			Groundwater/Infiltration	Groundwater/Infiltration	Groundwater/Infiltration
			Water Temperature	Water Temperature	Water Temperature
		Baseflow Maintenance	Baseflow Maintenance	Baseflow Maintenance	Baseflow Maintenance
		Fisheries/Aquatic Habitat	Fisheries/Aquatic Habitat	Fisheries/Aquatic Habitat	Fisheries/Aquatic Habitat
		Water Quality	Water Quality	Water Quality	Water Quality
		Erosion/Sediment Control	Erosion/Sediment Control	Erosion/Sediment Control	Erosion/Sediment Control
	Floodplain Management				
	Runoff Quality Control				
	Erosion/Flood Control				
Minor System Design	Major/ Minor System Design	Major/ Minor System Design	Major/ Minor System Design	Major/ Minor System Design	Major/ Minor System Design
Culvert Improvements	Culvert Improvements	Culvert Improvements	Culvert Improvements	Culvert Improvements	Culvert Improvements
Prior to 1980	1980's	1990's	2000's	2010's	<u>Today</u> →

Salt Management

Phosphorus

Excess Soils

Evolution of SWM Practices

Flood Risk Management Projects: Overland Flow mapping

Advanced Modelling (1D vs 2D)

Floodplain Defined based on 1D Model

Floodplain Defined based on 2D Model

Floodplain Defined based on Maximum of 1D and 2D Model

Flood Inundation (1D Model)

Flood Inundation (2D Model)

Flood Control: Uncontrolled vs. Controlled Flows

Fanshawe Dam & Reservoir

West London Dyke

Stormwater Management Ponds

Source: Upper Thames River Conservation Authority, <u>https://thamesriver.on.ca/wp-content/uploads/FanshaweDam-brochure2011.pdf</u>

Sustainable Infrastructure

Corporate Asset Management (O. Reg. 588/17) SWM Inventory

• Lifecycle Budgets

Consolidated Linear Infrastructure Environmental Compliance Approval (CLI-ECA)

Operation and Maintenance Monitoring Plan

Sustainable and Reliable Municipal SWM Infrastructure

The 'Challenge'

- 1. Gap between Guidelines and Industry Practices:
 - Unregulated vs. Regulated Flows for Flood Hazard mapping
 - Uncontrolled vs. Controlled Flows for municipal infrastructure sizing
 - Dry access vs. safe access
 - Inconsistent credit for infrastructure i.e.: • stormwater management ponds
- 2 Lack of coordination between provincial agencies and conservation authorities:
 - Oversized infrastructure.
 - Increased spending by municipalities.

🕅 Ontario

Ministry of the

The 'Challenge'

Modelling Project Objective

- Detailed headwater modelling as a means of flood risk mitigation
- Compare modelled vs monitored values
- Compare various models and results
- Determine a balance between risk, uncertainty and level of service

Pilot Project – Dingman Creek, Thornicroft Drain

Urbanized Headwater Neighborhood 'Westmount'

- Urbanized neighborhood
- Built in the early 1970s
- Mostly piped stormwater conveyance (5-year design storm)
- Wet Pond treats 13% of the total headwater's drainage area
- Outlets to Thornicroft
 Drain

Drainage Area/ Modelling Scales

150 m

Varying Peak Flow Results (250yr Chicago 24hrs)

Monitored Peak Flows to Date

Southdale Rd – Monitored Flows (2021-2024)

Modelling Approach Highlights

- 1. All models were set up in PCSWMM
- 2. PCSWMM Tools Used
 - a) Watershed Delineation Tool
 - b) Dual Drainage Creator
 - c) Storage Creator
- 3. Modelled storage controls
 - a) Catchbasins (outlet rating curve)
 - b) Wet pond (pond storage curve, outlet rating curve)
 - c) Pervious/ Impervious area storage (depression storage)

Adjusted Parameters for Calibration

- Reduced imperviousness (80% of original value obtained from GIS)
- 2. Adjusted depression storage parameters
- Reduced subcatchment width by 25%
- 4. Increased pipe roughness =0.015 (Chow, 1959) forconcrete sewers
- 5. Increased N perv to 0.30

September 21, 2023 (Southdale Culvert)

June 10, 2020 (Storm Pipe, 3P158)

July 15, 2024 (Hamlyn St Culvert)

Infrastructure Costing

Project/ Tributary Name	Flow Capacity (cms)	Culvert Size (m x m)	Total Cost
White Oaks Drain	92	16.1 x 1.2	\$5,000,000
Thornicroft Drain	60	12.8 x 3.4	\$2,200,000
White Oak Tributary	38	4.2 x 1.8	\$1,500,000
Trib 12	26	2.7 x 3	\$1,400,000
Trib 12	26	2.4 x 1.8	\$450,000
Anguish Drain	15	3.0 x 1.8	\$250,000
Pebble Creek (Multi-use pathway)	<5	2.4 x 1.5	\$200,000

Not financially sustainable to continue outdated practices and assumptions.

Ground-truthing, calibration, and engineering judgement

are critical to apply to modelling.

Document work to be defensible and reproducible by other professionals.

Flexibility from CAs/Province to accept industry practices or update guidelines for flood infrastructure.

Questions?

Oldcastle Infrastructure

Sustainable PERMACON Technologies

EVALUATION PROGRAM

StormTrap[•] HOOLE AR CONCRETE STORNWATER MANAGEMENT

2

ENVIROPOD[®]

terrafix

NEXT STORM

MEDIA SPONSOR

HOSTS

Presented by:

In association with:

