

Rob Amos, MASc., P.Eng Jacob Ursulak, MASc., P.Eng

Unmaintained Stormwater Outfalls:

Draining Water or Draining Resources?

OVERVIEW & BACKGROUND

CONSEQUENCES OF OUTFALL FAILURE

KEY FAILURE MECHANISMS

CASE STUDY: HOLLAND BLOORVIEW OUTFALL

SUMMARY OF LEARNING OBJECTIVES

Overview & Background

• Abundant throughout urbanized areas, stormwater outfalls are capable of extreme failure, causing mass erosion and risks to property and infrastructure

Numerous Drastically Failed Stormwater Outfalls Across Toronto

Consequences of Outfall Failure

Loss of Conveyance Potential within Storm Sewer

- Flooding and drainage concerns in sewer shed
- Potential water damage to properties and assets

Destabilization of Riverbank and Valley Slope

- Risks to buildings, infrastructure, utilities at top of slope
- Hazard to trail systems within valley corridor

Increased Sediment Loading within Downstream Watercourse

- Degraded aquatic habitat
- Decreased flow conveyance capacity during flood events

Key Failure Mechanisms

Undermining

Insufficient Erosion Protection \rightarrow Scour \rightarrow Collapse of Headwall \rightarrow Failure of Upstream Pipe

Undermined Stormwater Headwall Structure at Risk of Collapse

Collapsed Concrete Headwall Structure and Failed Upstream Pipe Segments

Key Failure Mechanisms

Outflanking

Erosive Watercourse Flows \rightarrow Lateral Erosion \rightarrow Outflanked Outfall

Outflanked Concrete Headwall Structure and Upstream Pipe

Outflanked Headwall Structure and Upstream Pipe Segment

Key Failure Mechanisms

Corrosion

Corrosion of Upstream Pipe → Flows Bypass Headwall Structure → Erosion Gully Formation

Erosion Gully Formation Along Stormwater Outfall

Erosion Gully Formation Along Valley Slope

Case Study: Holland Bloorview Outfall

- Extreme example of stormwater outfall failure leading to mass erosion gully
- Located in Burke Brook Ravine, within the Don River Watershed
- Over 5750 m³ of soil released across a 10-year timeline
- Mature vegetation loss and severely degraded aquatic habitat
- Risks to top of slope infrastructure, including
 Canada's Largest Children's Rehabilitation hospital
- Rapid Failure Progression over less than 14 years

Stormwater Outfall Failure Location

Outfall Failure Progression

Restoration Design

- Installation a new storm sewer network, with a series of maintenance hole drop structures
- Reconstruction of the slope with imported material to fill in erosion gully
- Slope stabilization through armourstone retaining walls and vegetated gabion baskets

Manhole at Imminent Risk of Failure

Profile of Completed Outfall Restoration Works

Permitting and Approvals

- Permits were applied for under an emergency framework, as this outfall failure posed an imminent risk to public safety and the environment.
- Emergency approvals included permissions from:
 - Toronto Ravine and Nature Feature Protection (RNFP)
 - Toronto and Region Conservation Authority Emergency Works Permit (TRCA)
 - Ministry of the Environment, Conservation and Parks (MECP)
 - Ministry of Natural Resources (MNR)
 - Letter of Advice from Fisheries and Oceans Canada (DFO)

Watercourse Design Considerations

- Installation of new headwall structure with enhanced scour protection provided by a grouted armourstone scour pad
- Vegetated buttress bank protection downstream of headwall to mitigate lateral erosion within the watercourse

Grouted Armourstone Scour Pad

Vegetated Buttress and Channel Substrate Integrated into Armourstone Retaining Wall

Access Considerations

 Access to this outfall location was highly constrained, due to steep slopes, environmentally significant areas, existing utilities, and mature vegetation

Sanitary Sewer Network Present Along Access Route

Steep Entrance into the Valley Corridor

Construction Phasing

Site Restoration

Comprehensive site restoration was completed across the entire area of disturbance,

including native wildflowers, shrubs and trees

Heavy Duty Access Route During Construction

Restored Construction Access Route with Native Plantings

Design Build Process

- Innovative Design-Build process utilized to streamline design and construction timelines (entire design-build project completed in under 12 months)
- Contractor directly interacted with Client, with support from complete suite of technical engineering disciplines
- Including the contractor's perspective in the design phase ultimately created a more constructable design, with less unexpected delays throughout the construction project

Learning Objective #1

Effective Data Base Management

- The City of Toronto has over 1800 stormwater outfalls, with over 75% of them having identified visible erosion risks
- To prevent extreme cases of failure, comprehensive inspection and maintenance programs must be undertaken
- After rapidly progressing failures are identified, a rapid response is critical

Learning Objective #2

Value of Preventative Maintenance

Learning Objective #3

Design Considerations of Outfalls

Incorporation of Climate Change Resilient Materials

Robust Energy Dissipation

Selection of Pipe Materials

Accounting for Maintenance Access

Comprehensive Monitoring & Maintenance Program

Questions?

Rob Amos, MASc., P. Eng Amos.R@Aquaforbeech.com 416-705-2367

Jacob Ursulak, MASc., P. Eng Ursulak.J@Aquaforbeech.com 226-606-2703

www.aquaforbeech.com

